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the most probable transport are presented to The backend was designed to fulfill Using three personas with different By bringing the technological probe into the context and the hands The final result and conclusions are based on analysis of discussions with the participants in
the commuter. In the work we present herg, basic metrics concerning prediction commute patterns we could create of users we could study and evaluate the basic functionality in a the CoDesign part of the study. In two final workshops alternative interactions and the need
we mainly focus on how to teach the machine time, training time and accuracy. and evaluate realistic but fictive real world setting. We presented visualisations of central metrics for visualisations of the teaching data was discussed.

learning agent in an easy manner. Our aim is travel data. and discussed the existing user interface
to give the commuter a possibility to initiate a

machine teaching session at any time, add The machine teaching
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prediction [2]. study.
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To investigate the area we used a Co-Design[3] process centered on an

technological probe. The eight participants in the study had a mix of

competences in graphic design, interaction design, agile development and simpler commute patterns is easily do”? and will perform In an o
computer science. Using the functioning technological probe, the understandable way. It was seen as an viable alternative to favorite lists

participants in the study explored and took part in an ongoing design in travel apps if the predictions are instant. The study participants also
process with the goal of contributing with their individual expertise and concluded that with continuous teaching over time it can become hard
perspective to the result of the study. The study spanned eight weeks with to understand the logic behind the predictions. It then seems important
weekly meetings and two workshops. that a user can assess and evaluate why a specific prediction was given.
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model training. With those metrics in place the result was evaluated using jcri.g.gered by new journeys as a complgment to, as.in Our case, always be . R Des. Issues, vol. 28, no. 3, pp. 101-116, 2012. Lars Holmberg
data created for three fictive personas[4]. We then conducted real world initiated by the user. For further work it would be interesting to Got prediction [5] L. Alexander, S. Jiang, M. Murga, and M. C. Gonzalez, “Origin

tests within the development group and with the study participants to verify investigate a more interactive approach. destination trips by purpose and time of day inferred from mobile
the functionality and that our metrics met our expectations. *‘ phone data,” Transp. Res. Part C, vol. 58, pp. 240-250, 2015.
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With our setting, our study participants concluded that teaching a
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