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Foreword 

Public transport is essential for sustainable urban mobility and accessibility. As cities 
continue to grow, the reliability and efficiency of public transport (PT) systems become 
increasingly important in delivering high-quality services to passengers. Among the key 
aspects of PT performance, punctuality is one of the most critical determinants of both 
passenger satisfaction and long-term ridership. 
Traditionally, assessments of punctuality in PT systems have relied on vehicle-centric 
metrics, which often fail to fully capture the passenger experience. This study shifts the 
focus to passenger-centric metrics, providing a more comprehensive view of PT 
punctuality by considering passengers' actual travel experiences. The insights gained 
from this research aim to support PT practitioners and researchers in better understanding 
passenger punctuality, thereby improving service quality and ultimately enhancing 
passenger satisfaction. 
As a small K2-project, this work was funded by K2, the Swedish Knowledge Centre for 
Public Transport. As the author of this work, I would like to thank Anders Wretstrand 
from Skånetrafiken and Jonathan Sundin from Transportstyrelsen for their valuable 
discussions and feedback during the project. I would also like to thank Roger Pydokke 
for his review and insightful discussions on the final draft of this report. I hope this study 
offers useful insights for academics, policymakers, and practitioners alike, and 
contributes to ongoing efforts to improve passenger punctuality and strengthen the 
reliability and efficiency of PT systems. 
 
Stockholm, October 2024 
Abderrahman Ait-Ali 
Project manager 
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Summary 

Public transport (PT) plays an important role in urban mobility and accessibility, with 
reliability, particularly punctuality, being a key determinant of passenger satisfaction and 
long-term ridership. Traditional metrics, such as On-Time Performance (OTP), often 
focus on vehicle performance and tend to overlook the passenger experience. This report 
explores alternative, punctuality metrics with more focus on the passenger perspective 
that more accurately reflect passengers’ actual travel experiences, i.e., passenger-centric 
punctuality metrics. 
The research begins with a qualitative review of both traditional and passenger-centric 
metrics, providing insights into variations of OTP and other measures. These metrics offer 
a more in-depth understanding of service reliability by considering real-time passenger 
demand and travel patterns. A quantitative case study on Stockholm’s commuter rail 
network, using traffic and passenger demand data, highlights differences between 
vehicle-centric and passenger-centric measures, particularly during peak and off-peak 
times. 
Key findings: 

• Various passenger-centric metrics are applicable to monitor PT service reliability 
more accurately by accounting for passenger demand and travel experiences 
across different modes and time periods. 

• The reviewed metrics vary in terms of relevance, accuracy, and ease of 
implementation for monitoring passenger punctuality in PT systems. 

• One major challenge in implementing these metrics is the limited availability and 
quality of passenger demand data, as well as the technical complexity involved in 
integrating automatic data collection technologies with existing systems. 

• Passenger-centric metrics can enable better monitoring of passenger punctuality 
and better operational management, especially in spatio-temporal areas where 
demand variations are significant. 

Adopting passenger-centric metrics is essential for improving PT performance 
monitoring. These metrics can provide valuable insights that traditional vehicle-centric 
approaches may overlook, particularly in understanding the impact of passenger demand 
variations in space and time. By combining passenger-centric and vehicle-centric metrics, 
PT stakeholders can make more informed, data-driven decisions that enhance service 
performance, operational efficiency, and ultimately, passenger satisfaction. However, 
further research is needed to assess the benefits (and costs) of combining both 
perspectives, as such a comprehensive approach could enable more targeted 
improvements, particularly in areas with high passenger delay prevalence. 
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Sammanfattning 

Kollektivtrafiken spelar en viktig roll för urban mobilitet och tillgänglighet, där 
tillförlitlighet, särskilt punktlighet, är en nyckelfaktor för att säkerställa passagerarnöjdhet 
och långsiktigt resande. Traditionella mått, såsom "On-Time Performance" (OTP), 
fokuserar ofta på fordonens prestanda och tenderar att förbise passagerarnas upplevelser. 
Denna rapport utforskar alternativa, passagerarcentrerade punktlighetsmått som mer 
exakt speglar passagerarnas faktiska reseupplevelser, det vill säga passagerarcentrerade 
punktlighetsmått. 
Forskningen inleds med en kvalitativ genomgång av både traditionella och 
passagerarcentrerade mått och ger insikter i olika varianter av OTP och andra mått. Dessa 
mått ger en djupare förståelse för servicepålitlighet genom att ta hänsyn till passagerares 
realtidsbehov och resmönster. En kvantitativ fallstudie av Stockholms pendeltågsnät, 
baserad på trafik- och passagerardata, belyser skillnaderna mellan fordoncentrerade och 
passagerarcentrerade mått, särskilt under hög- och lågtrafik. 
Viktiga slutsatser: 

• Det finns olika passagerarcentrerade mått som kan användas för att mer noggrant 
mäta kollektivtrafikens tillförlitlighet genom att ta hänsyn till passagerarnas 
efterfrågan och reseupplevelser över olika transportmedel och tidsperioder. 

• De granskade måtten varierar i fråga om relevans, noggrannhet och 
implementeringsmöjligheter för att övervaka passagerarnas punktlighet i 
kollektivtrafiksystem. 

• En viktig utmaning vid implementeringen av dessa mått är begränsad tillgång till 
och kvalitet på passagerardata, samt den tekniska komplexiteten som krävs för att 
integrera dem med olika befintliga system. 

• Passagerarcentrerade mått möjliggör bättre övervakning av passagerarpunktlighet 
och förbättrad operativ styrning, särskilt i spatio-temporala områden där 
efterfrågevariationerna är betydande. 

Att anta passagerarcentrerade mått är avgörande för att förbättra uppföljningen av 
kollektivtrafikens prestanda. Dessa mått kan ge värdefulla insikter som de traditionella 
fordoncentrerade metoderna ofta förbiser, särskilt när det gäller att förstå effekterna av 
variationer i passagerarnas efterfrågan över tid och rum. Genom att kombinera 
passagerarcentrerade och fordoncentrerade mått kan aktörer inom kollektivtrafiken fatta 
mer informerade, datadrivna beslut som förbättrar serviceprestanda, driftseffektivitet och 
slutligen passagerarnöjdheten. Däremot behövs ytterligare forskning för att utvärdera 
fördelarna och kostnaderna med ett mer omfattande tillvägagångssätt som kombinerar 
båda perspektiven, då detta skulle kunna möjliggöra mer riktade förbättringar, särskilt i 
områden där passagerarförseningar är som mest frekventa. 
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1. Introduction 

Quality public transport (PT) systems play a vital role in providing sustainable mobility 
and accessibility for urban areas. The quality of PT services affects the overall 
attractiveness of PT systems and is therefore important for attracting new passengers and 
for keeping existing ones. Reliability is one of the important quality aspects of PT 
services, as it can significantly affect passenger experiences and user satisfaction in the 
long term (Karlsson et al., 2011). However, the reliability of PT services is often 
challenged by various factors, such as traffic congestion, operational disruptions, and 
demand fluctuations (Wei et al., 2024). 
One of the most visible components of reliability in PT systems is punctuality; as it 
directly affects the travel experience of passengers (travel time, waiting time, 
convenience), and long-term satisfaction. PT service punctuality is shown to have a strong 
effect on how satisfied passengers are and how they view the overall quality of PT 
services (Friman, 2004). 

1.1. Background 

To monitor and measure the punctuality of PT services, traditional metrics have mainly 
focused on the punctuality of vehicles instead of passengers. For instance, to monitor the 
punctuality in Swedish railways, the infrastructure manager, or Trafikverket (2020), uses 
the percentage of trains arriving, at the final station, within 5 minutes (commonly noted 
RT+5). Such vehicle-focused metrics are the basis for many analyses and policy 
recommendations. Although beneficial from an operator's perspective, these punctuality 
metrics often neglect the passengers' viewpoint and therefore omit factors such as 
variations in travel demand (den Heijer, 2018), passengers' valuation of travel time 
(Barabino et al., 2015) and waiting time (Ait Ali et al., 2022). 
A number of studies have shown a tendency to move to passenger-oriented metrics 
because traditional measures are focused on the operators’ perspective (supply side) and 
may not match passengers’ travel patterns (Bagherian et al., 2016). Therefore, policies 
and strategies that aim to improve the quality of PT services may not have the intended 
effects. Hence, such a move toward passenger-oriented metrics seems essential. 
This shift to the demand/passenger side is further driven by the emergence of new 
technologies and valuable sources of new data (Pelletier et al., 2011), such as Automatic 
Vehicle Location (AVL), which includes traffic control data or GPS data on vehicles to 
monitor real-time locations and movements. Automatic Fare Collection (AFC) systems 
use technologies like smart cards or mobile payment applications to track boarding 
patterns and fare transactions. Automatic Passenger Counting (APC) systems are based 
on sensors, such as infrared sensors and captors on doors to count passengers 
entering/exiting the vehicle. These technologies collectively provide a richer and more 
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precise understanding of passenger demand and operational dynamics in public transport 
(Ghofrani et al., 2018). 

1.2. Problem statement 

Several studies have shown that punctuality from the passenger side, i.e., passenger 
punctuality, is generally lower than traditional vehicle punctuality. Vanhanen and Kurri 
(2005) study quality factors in Helsinki’s PT service and show that the passengers’ 
perceived quality, including reliability and hence punctuality, may differ quite 
significantly from the technical service level indicators employed by the operator’s 
planners. More recently, Nelldal et al. (2019) show, using average passenger loads, that 
punctuality levels obtained using RT+5 are higher (up to 8.7%) compared to passenger-
weighted punctuality. The authors highlight therefore the importance of weighting train 
punctuality based on the number of passengers to obtain a more accurate measure of 
passenger punctuality. A recent report by Transportstyrelsen (2023) states that 60% of 
train passengers think that trains are punctual whereas statistics indicate that train 
punctuality is as high as 90% (using RT+5 metric). Moreover, surveys on the passengers’ 
satisfaction with service punctuality indicate that there is a gap between what the statistics 
show and what the passengers experience. 
One reason for this gap is that passengers tend to perceive punctuality as worse than it is 
because they tend to remember more the unpunctual/delayed trips rather than the punctual 
ones, i.e., risk aversion (Nielsen, 2000). Another reason is that delays tend to be more 
common/longer during peak periods when more passengers travel in the PT system and 
therefore traditional vehicle punctuality measures underestimate passenger delays (Parbo 
et al., 2016). Another major drawback of such traditional measures is not fully capturing 
the effect of delays on passenger travel times and transfers, e.g., a small delay on a vehicle 
can lead to many passengers missing their connections and result in longer travel and 
waiting times. Hence, traditional vehicle-centric punctuality does not generally reflect 
passenger delays in PT systems. There is therefore a gap between these traditional metrics 
and the actual passenger experience, which requires more research exploring alternative 
metrics that consider and better capture punctuality in PT systems from the passengers' 
perspective. 

1.3. Aims and objectives 

The study aims to explore alternative approaches to monitor punctuality as an important 
reliability component and the consequence of quality PT services. The focus is on how 
punctuality can be measured and better monitored from a passenger perspective. The goal 
is to provide recommendations for improved PT management and lay the foundation for 
future research aimed at analyzing and enhancing the monitoring of punctuality in PT 
systems from a more passenger-focused perspective. 
Based on an assessment of possible metrics and an investigation of their limitations, 
challenges, and potentials, the main objective of this work is to provide initial research 
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on better monitoring of punctuality in PT systems and hence lay the basis for further 
research to improve monitoring processes from a passenger perspective and enhance 
punctuality in PT systems. 

1.4. Scope 

This study specifically reviews passenger-centric metrics for punctuality within PT 
systems, excluding other quality components such as robustness, comfort, or broader user 
satisfaction and other behavioural aspects. Interested readers can find more details on 
various reliability aspects from a passenger perspective in a review by Parbo et al. (2016) 
focusing on rail services, and a more recent review study by Tirachini et al. (2022). 
This work is interested in metrics that directly and objectively reflect passenger 
punctuality, aiming to address the gap between traditional vehicle-centric measures and 
actual passenger experiences. Consequently, the study excludes investigations into 
passengers' subjective perceptions of punctuality, although these perceptions may 
influence their travel behaviour, e.g., due to loss aversion (Nielsen, 2000). 
Additionally, the study does not cover the passenger perspective in the sense of the 
passengers’ desires for specific punctuality or quality levels but rather focuses on 
assessing the actual levels experienced by passengers. For further insights into 
passengers’ desired perspectives, refer to (dell’Olio et al., 2011). Similarly, passengers’ 
desired punctuality indicator is beyond the scope of this research, see (Blayac and 
Stéphan, 2021) for a study on this. 

1.5. Significance and relevance 

Understanding disruptions' impact on passenger actual punctuality is crucial for the 
management of PT systems, including operational planning and network optimisation. 
Such knowledge can serve as a critical tool for PT agencies, guiding short-term mitigation 
measures as well as informing strategic long-term decisions, e.g., to improve network 
performance by minimising long-term impacts from disruptions. Furthermore, designing 
PT services which consider passengers’ demands and expectations is important to attract 
new users (Beirão and Sarsfield Cabral, 2007). 
The EN 13816 standard, by the European Committee for Standardization (CEN, 2002), 
sets the requirements for setting the goal and measuring the quality of PT services. The 
general principles are displayed in the service quality loop in Figure 1. The figure 
illustrates the importance of the links between four different perspectives in improving 
the punctuality of PT services. It highlights particularly the significance and relevance of 
proper measurement of punctuality to bridge the gap between the demand and supply 
side. 
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Figure 1. Service punctuality loop, based on the EN 13816 standard by CEN (2002). 

Service reliability, including punctuality, has an influence on passengers' route choices 
and adaptation behaviours within PT systems (Berggren et al., 2022). Empirical evidence 
suggests that passengers tend to prioritize travel time certainty over reductions (in travel 
time) as they associate an inherent disutility with uncertainty (Nielsen et al., 2008). 
Hence, the importance of monitoring passenger travel time punctuality to better 
understand how PT passengers' satisfaction and behaviour are affected. 
Furthermore, improved measurement of the actual quality of PT services, as illustrated in 
Figure 1 for punctuality, is relevant and significant to improve several different functions 
central to the provision of PT service (Uniman et al., 2010). These include, and are not 
limited to, route monitoring and detection of changes in service quality, evaluation and 
management of operator performance, identification of the causes of service quality 
problems and appropriate strategies to address them, and prediction of travel behaviour 
responses to changes in transit level of service and ridership/revenue forecasting. 

1.6. Structure of the paper 

This paper is organised as follows: section 2 reviews the existing related literature 
focusing on passenger-centric punctuality monitoring in PT systems. Relevant metrics 
are assessed in section 3, examining their effectiveness while discussing associated 
challenges and potentials. In section 4, a case study is presented, including input data, 
illustrations and comparisons of selected metrics. The paper ends with concluding 
remarks, including highlights from the study and recommendations for future works, in 
section 5. 
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2. Passenger punctuality in public 
transport 

PT systems are expected to transport passengers to their destinations with minimal delays 
and disruptions. Thus, punctuality is often used as an indicator of the performance and 
reliability of these systems. However, measuring and monitoring punctuality is complex, 
as it depends on multiple factors, including network characteristics, demand patterns, 
service design, traffic conditions, and operational management. Therefore, it is useful to 
review and understand some existing research and practices that are related to measuring 
and monitoring punctuality and to identify metrics for passenger punctuality that can be 
in PT systems. 

2.1. Punctuality as an indicator of service reliability 

In transport systems, punctuality is a fundamental indicator of service reliability, 
alongside regularity, particularly for passenger transport like PT systems (Gittens and 
Shalaby, 2015). From an operational point of view, Rudnicki (1997) defines punctuality 
as any deviation, expressed in absolute or relative units, from the timetable, i.e., schedule 
adherence. Punctuality reflects therefore the system's ability to transport passengers to 
their destinations on time. In practice, it is often measured using OTP, i.e., the proportion 
of trips meeting specified punctuality thresholds, such as being within 5 minutes of 
scheduled arrival time, also known as Right-on-Time or RT+5 (Rudnicki, 1997). The 
thresholds are usually lower for short-distance PT services than for inter-city and long-
distance services, e.g., thresholds for commuter services range from 3 to 6 minutes (Denti 
and Burroni, 2023). 
Different perspectives can be used to evaluate PT service reliability (Zhao et al., 2013). 
The Transit Capacity and Quality of Service Manual, or TCQSM (2013), states that 
service quality and reliability are measured by how PT services are perceived by 
passengers. PT agencies or operators may have a different view, focusing more on how 
well PT services are operated rather than the passengers’ experience.  
Extensive research has explored punctuality across various dimensions, including 
definitions, metrics, costs/benefits, causes, and effects, highlighting its critical 
importance to passengers, operators, and PT agencies. Two main punctuality perspectives 
are highlighted in the literature, namely the vehicle and passenger perspective, see Figure 
2 by van Oort (2016) for an illustration of the main determinants in both perspectives. 
Unpunctual operators face increased costs due to schedule recovery challenges, often 
requiring extra vehicles to maintain the promised level of service, i.e., travel time, and/or 
frequency (TCQSM, 2013). For passengers, unpunctuality can lead to longer travel and 
waiting times and uncomfortable trips, e.g., crowding onboard or missing connections, 
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especially for passengers following fixed departure times, e.g., in the case of infrequent 
services with longer headways (Bagherian et al., 2016). Improved punctuality positively 
impacts passenger perceptions and can boost PT ridership (van Loon et al., 2011).  

 
Figure 2. Passenger and vehicle trip determinants of service punctuality (van Oort, 2016). 

To differentiate punctuality measurement levels in PT systems, Danaher et al. (2020) 
distinguish between system, route, trip, and stop level, each offering specific insights into 
punctuality analysis. Often in practice, instead of analysing the performance on all routes, 
which is expensive/unrealistic, a sample of main routes is chosen for larger areas of 
ridership, demographics, and geography in a PT system (Cramer et al., 2009). 
Additionally, various statistical techniques are employed to analyse punctuality, e.g., 
percentage analysis, time unit comparisons, normalization, and variability indices 
(Danaher et al., 2020). 
Moreover, certain types of metrics are introduced to account for, e.g., time-of-day and 
day-to-day variability while reflecting both passenger and transit agency perspectives 
(Chan, 2007). For instance, distributions of journey time (total travel, in-vehicle, and wait 
times), with metrics such as mean, coefficient of variation (CoV), and the percentage of 
observations exceeding specific thresholds. For high-frequency, e.g., peak-hours PT 
services, schedule adherence is measured at specific stops of a route by assessing the 
average deviation from the schedule, its coefficient of variation, and the percentage of 
deviating arrivals. Headway distributions can also be measured, including their mean, 
coefficient of variation, and percentages of headways with certain thresholds. 

The use of some or a combination of these techniques, from a passenger or operator 
perspective, can allow for more comprehensive comparisons of punctuality levels within 
and across different parts of the PT system. Table 1 provides some examples of metrics, 
their type and level. Some are expressed in time units, e.g., delay average, or metrics in 
the form of percentages or distributions, e.g., OTP, which are easier to understand but do 
not capture the actual variations in punctuality. Variability metrics, e.g., variance, 
standard deviation, and CoV, quantify the extent of variation in relevant aspects of the 
passenger trip, e.g., waiting and travel times. For instance, CoV is unitless and can be 
used for comparisons between different services, e.g., routes/lines with different 
properties. Indices based on high percentile values indicate the limit of common 
deviations from the mean, while ignoring rare extremes and outliers, and can be used to 
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compare services with different mean values. Other classifications include central 
tendency versus extreme risk indicators, as well as binary/discrete versus continuous 
(Blayac and Stéphan, 2021). 

Table 1. Examples of punctuality metrics, their corresponding type, and level. 
Type Example Level 

Units of time An average delay at a given stop/station is 5 minutes. Stop 

Percentages/distributions The percentage of trips on time (arrival within 5 minutes to destination) 
from an origin is 90%. 

Trip 

Variability measures A route, with a 20-minute average running time and a standard deviation 
of 3 minutes, has 0.15 as a CoV. 

Route 

Indices/percentiles The 95th highest running time in the bus network was only 39 minutes, 
i.e., an index of 1.3 when divided by the average running time. 

System 

2.2. Commonly used punctuality metrics 

Choosing an appropriate metric is important for evaluating the punctuality of PT services. 
As mentioned earlier, one commonly used metric is OTP, which calculates the percentage 
of “on-time” arrivals, often to the final stop. “On-time” is generally within a specified 
threshold or delay tolerance window compared to the scheduled time (Rudnicki, 1997, 
Danaher et al., 2020). Given a delay threshold 𝜏𝜏, OTP can be calculated across all stops 
𝑆𝑆 using equation (1). 

𝑂𝑂𝑂𝑂𝑂𝑂(𝜏𝜏, 𝑆𝑆) = ∑ 𝑉𝑉𝑖𝑖(𝜏𝜏)𝑖𝑖∈𝑆𝑆
∑ 𝑉𝑉𝑖𝑖

𝑡𝑡𝑡𝑡𝑡𝑡
𝑖𝑖∈𝑆𝑆

,   (1) 

where 𝑉𝑉𝑖𝑖(𝜏𝜏) is the number of operated vehicles arriving within a delay threshold 𝜏𝜏 to 
stop 𝑖𝑖, whereas 𝑉𝑉𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 is the total number of operated vehicles (often excluding 
cancellations). Instead of considering all stops 𝑆𝑆, OTP is often calculated at terminal 
stations or stops. 

2.2.1. Variants of OTP 

While OTP, as defined in equation (1), provides a straightforward measure of punctuality, 
it has its limitations, particularly in its binary nature, which overlooks cancellation and/or 
the magnitude of deviations from the schedule (Barabino et al., 2015). Delay tolerance, 
or punctuality windows, are critical factors in determining OTP scores and ultimately, 
passenger punctuality. Different countries and operators employ varying criteria, 
emphasizing the importance of understanding how these criteria impact service quality 
(TCQSM, 2013, Blayac and Stéphan, 2021). For instance, the British rail infrastructure 
manager (IM) relies on OTP-variants such as the “time-to-X” measure, i.e., the percentage 
of recorded stations/stops (not vehicles) where trains arrive within a threshold X (varying 
between 1 and 30 minutes), alongside the official 1-min threshold OTP (NetworkRail, 
2017). 
The British IM also measures OTP at each passenger station to capture the proportion of 
trains arriving on time at intermediate stops (besides terminal ones). This can better 
capture passengers' real experiences, especially early departures and longer waiting times 
(Mishalani et al., 2006, Denti and Burroni, 2023). In the case of long-headways services, 
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Zhao et al. (2013) mention the use of a timetable-based metric similar to OTP, i.e., En-
route Schedule Adherence (ESA), but assesses schedule adherence (often between −1 
and +5 minutes) along multiple en-route time points. ESA has been used to monitor 
punctuality in the PT system of New York, and is more suitable when passengers rely on 
published schedules, e.g., low-frequency PT services during off-peak hours (Cramer et 
al., 2009). 
To monitor train service punctuality, the Swedish IM, or Trafikverket, uses an alternative 
measure, i.e., delay increment (DI), which calculates deviations (of at least 3 minutes) 
between a train's actual passing time and its scheduled time at consecutive points along 
the route, see Figure 3 for an illustration by Joborn and Ranjbar (2022). Each disturbance 
leading to a non-zero DI is categorized by cause for monitoring infrastructure failures and 
effects on train punctuality. DI is used to implement reliability improvement plans and 
for accountability with train operators using performance regimes (Joborn and Ranjbar, 
2022). The same authors proposed the concept of delay contribution (DC) as an 
improvement to DI to better identify the critical disturbances that have more effects on 
the train delays, e.g., officially measured using OTP at the final station. 

 
Figure 3. Illustration of delay increments (DI) used to monitor train service performance in Sweden, image by Joborn 
and Ranjbar (2022). 

To account for cancelled services, variants of OTP have been introduced such as the 
Combined Performance Measure (CPM) which considers both delayed and cancelled 
departures in the total scheduled departures, i.e., 𝑉𝑉𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡 includes cancelled departures in 
equation (1) leading to lower scores than OTP (Parbo et al., 2016). Until recently, CPM 
was used by Trafa (2023) for reporting all official punctuality statistics of rail transport 
in Sweden. To report cancellations in British rail services, the IM uses cancellation scores 
at all recorded station stops to complement the “time-to-X” metric (NetworkRail, 2017). 
From a demand perspective, passengers think about punctuality, and reliability in general, 
in terms of the overall waiting and travel time. Unlike operators (from a supply 
perspective) which focus on how well services follow OTP standards, passengers are 
more affected, in their departure time decisions, by waiting and running times and their 
variations (Diab et al., 2015). Hence, many studies have introduced metrics focusing on 
analysing passenger waiting and travel times. 
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2.2.2. Passenger waiting and travel time 

Before the emergence of new automatic data collection technologies such as AFC and 
APC, traditional frameworks, with several methods to analyse passenger waiting time, 
have been developed based on basic data, e.g., AVL data from traffic control systems 
(NASEM, 2006). Two classes of metrics have been developed in the literature using such 
data, namely: timetable-based measures of deviations, mainly used for low/medium-
frequency services, e.g., OTP and CPM; and headway-based measures mainly used for 
high-frequency services (Zhao et al., 2013). These methods allow for studying how 
schedule and headway deviations (unpunctuality) and their uncertainties affect both 
passengers’ actual and budgeted waiting and travel times. For instance, the budgeted 
waiting time is often divided into ideal waiting time, which would result from service 
exactly following the schedule; and excess waiting time which is the difference between 
actual and ideal waiting time and is due to service unpunctuality (NASEM, 2006). 
In their study of optimal running time schedules, Furth and Muller (2007) mention two 
metrics directly impacting service reliability and punctuality, i.e., excess waiting time 
(EWT) and potential travel time (PTT). EWT reflects the excess waiting time that 
passengers incur due to unpunctual departure times whereas PTT, also called buffer time, 
relates to the budgeted travel time but not used in waiting or riding. Figure 4 illustrates 
EWT (wait) and PPT (potential) times, and typical distributions for a passenger service 
departing from 𝑖𝑖 and arriving at 𝑗𝑗. 

 
Figure 4. Illustration of a typical departure and arrival distribution of vehicles for analysing passenger waiting and travel 
times, adapted from (Furth and Muller, 2007). 

Focusing on analysing passenger waiting times, basic AVL data help analyse platform 
waiting time 𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, i.e., time passengers spend waiting at a stop/station platform, 
and budgeted waiting time, which consists of 𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and potential waiting time 
𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 depending on the risk passengers are willing to take for missing a departure 
(NASEM, 2006). 
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Figure 5. Illustration of a framework for passenger waiting time analysis. 

These are often combined into one equivalent metric called the equivalent waiting time 
𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (NASEM, 2006). In equation (2), 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the average between 
𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and the 95th-percentile waiting time (often noted 𝑊𝑊.95). In this formulation, 
passengers are assumed to accept a 5% risk of missing their departure. 

𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 1
2

(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 +  .95)    (2) 

To better analyse the waiting and travel time of passengers, it is important to consider and 
account for how they arrive at the departure stations/stops. Passengers adjust their arrival 
at the station/stop based on, among others, knowledge of the schedule, punctuality and 
reliability performances (Wilson et al., 1992). Therefore, existing studies generally 
distinguish between the analysis of long- and short-headway services. In the former, 
passengers are expected to arrive at stops just before the scheduled departure time to 
reduce their waiting time, whereas, in the latter, they are usually assumed to arrive 
randomly without looking at the schedule, i.e., even if there is a one (Furth and Muller, 
2007). 

2.2.3. Short-headway services 

Short-headway routes and services are found in many PT systems including urban 
commuter rails and many bus systems in the inner portions of major cities, particularly in 
peak periods. Assuming that passengers’ arrival rate is evenly distributed (i.e., constant 
arrival rate) and that they board the first vehicle that arrives, Wilson et al. (1992) show 
that the expected waiting time 𝐸𝐸𝐸𝐸 is given by equation (3), where 𝐸𝐸[𝐻𝐻] and 𝐶𝐶𝐶𝐶𝐶𝐶[𝐻𝐻] are 
mean and coefficient of variation of actual headway, respectively. The latter is calculated 
as the standard deviation of headway divided by the mean 𝐸𝐸[𝐻𝐻]. 

𝐸𝐸𝐸𝐸[𝐻𝐻] = 1
2
𝐸𝐸[𝐻𝐻](1 + 𝐶𝐶𝐶𝐶𝐶𝐶[𝐻𝐻]2)   (3) 

In the case of perfect headway adherence, 𝐸𝐸𝐸𝐸 for passengers is half the headway, but it 
increases as the headway variation increases. Based on basic AVL data and in the absence 
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of more detailed passenger data, equation (3) estimates passengers' waiting time assuming 
a constant rate of passenger arrivals. To reduce errors from this assumption, this measure 
can be studied for short periods, e.g., peak hours, and should therefore be avoided for 
analysing longer periods, e.g., a whole day (Wilson et al., 1992). 

A related measure that is a useful supplement to 𝐸𝐸𝐸𝐸 is 𝐸𝐸𝐸𝐸𝐸𝐸 which was also proposed 
by Wilson et al. (1992). The authors define 𝐸𝐸𝐸𝐸𝐸𝐸 as the difference between the actual 
passenger waiting time and the expected waiting time that would result from perfect 
adherence to schedule, see the formulation in equation (4). 𝐸𝐸𝐸𝐸𝐸𝐸 is especially useful when 
comparing service quality across routes with quite different headways. 

𝐸𝐸𝐸𝐸𝐸𝐸 =  𝐸𝐸𝐸𝐸[𝐻𝐻] − 𝐸𝐸𝐸𝐸[𝐻𝐻𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒]   (4) 

When focusing on analysing specific periods, e.g., short headways or peak hours, where 
𝐻𝐻𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is constant, 𝐸𝐸𝐸𝐸𝐸𝐸 is simply 𝐸𝐸𝐸𝐸[𝐻𝐻] minus half of 𝐻𝐻𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. In most cases, 
e.g., longer periods, 𝐻𝐻𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 will be variable. Used for monitoring PT reliability by 
London Transport, 𝐸𝐸𝐸𝐸𝐸𝐸 was extended later to the entirety of journeys (comparing mean 
actual and schedule values of each component of passenger journeys) to capture service 
reliability and compare it across routes with quite different headways (Zhao et al., 2013). 
Even in the absence of data on passenger arrival rates, it is possible, at least for high-
frequency services, to measure how well passengers are served at their departure stops, 
Assuming random passenger arrivals (valid for short-headway services), Wilson et al. 
(1992) define the percentage of passengers receiving good service based on how much of 
the waiting time for the next vehicle is within 𝐻𝐻𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. For bad services, they consider 
how much of the excess waiting time (to the next vehicle) is more than 2 × 𝐻𝐻𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 

2.2.4. Long-headway services 

In the case of services with long headways, passengers are assumed to arrive at stops at 
times designed on the timetable to minimize their waiting time, i.e., just before the 
scheduled departure time. Hence, schedule deviation 𝛿𝛿𝛿𝛿: = 𝐷𝐷 − 𝐷𝐷𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 are the main 
determinant of the passengers’ waiting time, where 𝐷𝐷𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and 𝐷𝐷 are the scheduled 
and actual departure times, respectively. Thus, negative values of 𝛿𝛿𝛿𝛿 represent earlier 
vehicle departures. 

As mentioned earlier, Furth and Muller (2007) introduced 𝐸𝐸𝐸𝐸𝐸𝐸 and 𝑃𝑃𝑃𝑃𝑃𝑃, see Figure 4. 
The authors suggest, in the case of long headways, using 2nd-percentile departure times 
𝐷𝐷(.02) to measure 𝐸𝐸𝐸𝐸𝐸𝐸, and 95th-percentile arrival times 𝐴𝐴(.95) for 𝑃𝑃𝑃𝑃𝑃𝑃. For a stop 𝑠𝑠, 
𝐸𝐸𝐸𝐸𝑇𝑇𝑠𝑠 and 𝑃𝑃𝑃𝑃𝑇𝑇𝑠𝑠 are reformulated in equation (5) and (6), respectively. 

𝐸𝐸𝐸𝐸𝑇𝑇𝑠𝑠 = 𝐸𝐸[𝐷𝐷𝑠𝑠] − 𝐷𝐷𝑠𝑠
(.02)   (5) 

𝑃𝑃𝑃𝑃𝑇𝑇𝑠𝑠 = 𝐴𝐴(.95) − 𝐸𝐸[𝐴𝐴𝑠𝑠]   (6) 

In both equations, 𝐸𝐸[𝑋𝑋] refers to the expected value of the random variable 𝐷𝐷𝑠𝑠 and 𝐴𝐴𝑠𝑠 
representing the actual departure and arrival time at a station/stop 𝑠𝑠, respectively. In these 
formulations, passengers are assumed to accept a 2% risk of missing their departure, and 
a 5% risk of arriving late to their destination. 
Focusing on analysing waiting times, the short-headway framework is extended to study 
the effect of schedule deviations on passengers’ waiting time for long-headway services. 
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As illustrated in Figure 6, the excess budgeted waiting time is the spread in the schedule 
deviation distribution, i.e., 𝛿𝛿𝐷𝐷(.95)-𝛿𝛿𝐷𝐷(.02). 

 
Figure 6. Illustration of the framework for analysing passenger waiting time for long-headway bus services, adapted 
from (NASEM, 2006). 

The excess budgeted waiting time, in Figure 6, includes both excess platform and 
potential waiting time which relates to 𝐸𝐸𝐸𝐸𝐸𝐸 and 𝑃𝑃𝑃𝑃𝑃𝑃, respectively. These can be 
combined in an equivalent excess waiting time, i.e., 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 using the previous 
formulation in equation (2). The synchronisation time is independent of schedule 
deviations as it is an inevitable consequence of, e.g., human risk aversion, headway 
service design, and uncertainty in station access times (NASEM, 2006). 

2.2.5. Other metrics 

More generally, other alternative metrics have been commonly used to assess punctuality, 
e.g., using continuous metrics that reflect actual delays, such as total or average delays, 
variability metrics (variance, standard deviation and 𝐶𝐶𝐶𝐶𝐶𝐶), statistical distributions of 
running time and schedule deviations (Zhao et al., 2013). Other metrics have been studied 
and introduced such as the risk of delay that is proposed by Ferreira and Higgins (1996) 
to capture the probabilities of specific delay durations, and other retrospective metrics 
such as maximum delay and delay-at-risk (Blayac and Stéphan, 2021). 

Common metrics such as total or average (vehicle) delays, variability metrics, and 
distributions, provide valuable insights from an operational perspective but may not fully 
capture passengers' experiences and expectations. For instance, Börjesson and Eliasson 
(2011), and more recently Denti and Burroni (2023), criticized the use of “average delay” 
as a measure of (train) reliability as it does not reflect passengers’ preferences. Moreover, 
service quality frameworks, such as EN-13816 by CEN (2002), underscore the 
importance of incorporating user-oriented perspectives into punctuality metrics. While 
operator-centric metrics like OTP remain prevalent, there is a growing recognition of the 
need for passenger-centric metrics that directly measure punctuality from the perspective 
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of passengers. This shift towards passenger-focused metrics aims to align service quality 
assessments more closely with passenger patterns and expectations, ultimately enhancing 
the overall passenger experience and satisfaction (Danaher et al., 2020). 

2.3. Metrics for passenger punctuality 

The punctuality metrics discussed thus far have primarily focused on vehicle-based 
assessments rather than directly reflecting the experiences of passengers. Many studies 
emphasize the importance of adopting a user-centric perspective when measuring 
punctuality in PT systems (Wardman, 2001, Mishalani et al., 2006). There is therefore a 
notable shift in recent years towards using passenger-oriented measures, particularly in 
quantifying passenger punctuality (Hendren et al., 2015). 
Monitoring passenger punctuality involves assessing how well passengers reach their 
destinations within predefined time windows around scheduled times, encompassing their 
entire journey from origin to destination, including transfers (Parbo et al., 2016). For 
instance, Lee et al. (2014) identify, at a particular transfer, that scheduled transfer time, 
distributions of vehicle arrivals, headways and walking time have major effects on 
passenger punctuality. Hence, unlike vehicle punctuality, which evaluates trips of 
individual vehicles, passenger punctuality emphasizes the holistic experience of 
passengers throughout their travel itinerary. Defining and characterizing passenger 
punctuality is therefore less straightforward compared to vehicle punctuality metrics 
(Nelldal et al., 2019).  
One straightforward way to assess passenger punctuality of PT services is to conduct 
manual customer surveys where passengers can give feedback and are directly asked to 
rate the punctuality of the PT services they use. Initially, such surveys enabled transit 
agencies to directly observe a limited part of the passenger experience due to its high cost 
of collection and processing, limiting sampling frequency and system coverage. This 
changed with the arrival of technologies for automatic data collection, such as AFC and 
APC, creating large sets of data on individual vehicle movements and passenger demand 
that could be used to estimate the passenger experience more efficiently (Uniman et al., 
2010). 
In the following, we will explore specific metrics that can potentially be used to monitor 
passenger punctuality in PT systems. Unlike the previously reviewed vehicle-centric 
measures, these metrics can better reflect passengers' experiences and perceptions, and 
may therefore provide more valuable insights to improve the reliability of PT systems. 

2.3.1. General demand estimates 

While OTP is commonly used as an operator-oriented metric, it can be refined to be more 
user-oriented by incorporating weights that represent passenger volumes. For instance, 
Kristoffersson and Pyddoke (2019) studied punctuality from a train passenger perspective 
using ridership data for some Swedish regional lines. The authors compared train 
punctuality, measured as RT+5, with passenger punctuality, measured as the share of 
passengers arriving at their destination within 5 minutes. The authors distinguish between 
punctual (RT+5) and significantly late/unpunctual (RT+30) train/travellers. Similarly, 
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Nelldal et al. (2019) measured passenger punctuality on a larger Swedish rail network 
(different types of trains, lines and time periods) by weighting the percentage of delayed 
trains by the average number of passengers. The authors explored several related 
measures, e.g., total and average passenger delay (in pax-min), and noted that the 
breakdown by the hour, rather than by individual trains, allows for calculating punctuality 
more effectively with existing data. However, accurately determining the number of 
passengers per individual train is challenging. Despite this, estimating the distribution of 
passengers per hour across different day types is feasible, albeit not precise for each train. 
The authors reported total and average delay time experienced by passengers on delayed 
trains excluding cancelled trains. 
Unlike Kristoffersson and Pyddoke (2019) who found no significant difference between 
passenger and train punctuality results, Nelldal et al. (2019) highlight their differences 
which are more pronounced during peak hours and on longer routes. As mentioned 
earlier, discrete metrics like OTP or CPM, although made more user-oriented, have 
limitations in capturing the magnitude of delays and therefore nuances of passenger 
experience (Barabino et al., 2015). 
To monitor passenger punctuality and measure the service performance of different train 
contract groups in British railways, NetworkRail (2017) uses composite metrics such as 
Average Passenger Lateness (APL) and Total Passenger Lateness (TPL). These are an 
estimate of how late every passenger reaches their destination station. APL is calculated 
by determining the lateness of trains at monitoring points relative to scheduled times, 
incorporating cancellation factors and passenger weights, and then averaging these values 
per day and service group. TPL aggregates the lateness values over a period for each 
service group, reflecting the overall cumulative lateness experienced by passengers across 
multiple days. The expected number of passenger journeys, i.e., demand forecast, is 
calculated annually based on ticket sales and revenue data, and adjustments are made 
within the year. 
Similarly and based on national demand prognoses, the Dutch IM (ProRail) and national 
operator (NS) have monitored passenger punctuality in the realized train timetable 
(Wolters, 2016). The 𝑃𝑃𝑃𝑃1 metric was used until 2015 and is formulated in equation (7), 
where 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 are, respectively, the arrivals and transfers that are 
successfully realized. 

𝑃𝑃𝑃𝑃1(𝜏𝜏) = 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝜏𝜏)+𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝜏𝜏)
𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

  (7) 

The denominator accounts for the corresponding planned quantities according to the 
scheduled timetable. A certain arrival is realized if it is within the delay threshold 𝜏𝜏 from 
the planned arrival. Transfers are only considered at stations with high numbers of 
(forecasted) transferring passengers and are realized if transfer time is at most 7 minutes 
and at least enough to cross the platforms. As mentioned by Wolters (2016), these 
quantities are measured at around 35 stations and weighted with demand estimates, 
alternatively, an average train ridership is assumed. The demand forecasts are typically 
made for different periods, i.e., morning/evening peak hours and off-peak hours on 
workdays, and weekends. 
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2.3.2. Detailed passenger trip data 

As mentioned earlier, automatic data collection systems, e.g., AFC, and APC, offer 
valuable insights into passenger demand and behaviour, and hence passenger punctuality. 
These technologies are increasingly used in PT systems to capture detailed passenger 
journey information (Uniman et al., 2010). Figure 7 illustrates how detailed AFC data 
can be matched to the passenger journey time. This enables, therefore, more accurate 
estimations of travel experiences of individual origin-to-destination (OD) passengers, 
thus providing a new, easy-to-access resource for the monitoring, evaluation, and analysis 
of service quality and enhancing the understanding of passenger experiences including 
punctuality. 

 
Figure 7. Illustration by Chan (2007) of the components of the passenger journey time and use of tap-in/out information 
from (London’s Oyster) smart card data. 

By combining, for instance, AFC data from smart card transactions and AVL data 
tracking vehicle movements, it is possible to not only improve the accuracy of existing 
measures, e.g., the one based on general demand estimates, but also allow for the 
definition of new metrics that better represent punctuality for PT users (Bagherian et al., 
2016). Pelletier et al. (2011) emphasize the diverse applications of data from AFC 
systems, such as smart cards, in the management of PT systems, particularly in calculating 
performance and reliability indicators at the tactical level, especially in systems with entry 
and exit validations (Uniman et al., 2010). 
In their early study of passenger punctuality of high-frequency PT services, Wilson et al. 
(1992) considered accounting for variable passenger arrival rates. The authors suggested 
an improved measurement of 𝐸𝐸𝐸𝐸 and previously formulated in equation (3), by 
incorporating passenger weights in the formulation. Let 𝑛𝑛 be the number of consecutive 
vehicle trips from a certain stop, and 𝐻𝐻𝑖𝑖 is the headway of the 𝑖𝑖𝑡𝑡ℎ vehicle departure. By 
noting 𝑝𝑝𝑖𝑖 as the mean arrival rate (e.g., in pax/min) of passengers to the station/stop before 
the 𝑖𝑖𝑡𝑡ℎ departure, the expected (passenger-weighted) waiting time 𝐸𝐸𝑊𝑊𝑝𝑝 can be formulated 
as in equation (8). 

𝐸𝐸𝑊𝑊𝑝𝑝(𝐻𝐻) = 1
2
∑ 𝑝𝑝𝑖𝑖𝐻𝐻𝑖𝑖

2𝑛𝑛
𝑖𝑖=1
∑ 𝑝𝑝𝑖𝑖𝐻𝐻𝑖𝑖𝑛𝑛
𝑖𝑖=1

 ,   (8) 

In theory, 𝐸𝐸𝑊𝑊𝑝𝑝 can better measure passenger waiting time including over longer periods 
with highly variable passenger arrivals (Wilson et al., 1992). However, this measure 
requires access to more detailed data on passenger arrival rates. This is the case, for 
instance, using AFC data at PT train stations, unlike bus passengers who only use their 
tickets when boarding the vehicle (not when arriving at the bus stop). 
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Using AFC data, i.e., time-stamped Oyster smartcard transactional data from the London 
rail network, Chan (2007) introduced and applied a new metric named Excess Journey 
Time (EJT) to measure actual journey times experienced by passengers. For a given OD 
pair 𝑜𝑜𝑜𝑜, 𝐸𝐸𝐸𝐸𝑇𝑇𝑜𝑜𝑜𝑜 is defined using the difference between actual passenger journey times 𝐴𝐴𝑘𝑘 
and scheduled journey time 𝑆𝑆𝑜𝑜𝑜𝑜, or some other pre-defined journey time standard, see the 
illustration in Figure 8 by Chan (2007). 

 
Figure 8. Typical distribution of journey times for an OD pair (Chan, 2007). 

Given |𝑘𝑘| passenger trips on an 𝑜𝑜𝑜𝑜 pair, equation (9) formulates the 𝐸𝐸𝐸𝐸𝑇𝑇𝑜𝑜𝑜𝑜 score. This 
metric can be extended to a complete line by weighting the scores from individual pairs 
with their passenger ridership. EJT is hence a measure that balances the passenger’s and 
operator’s perspectives of PT service quality. 

𝐸𝐸𝐸𝐸𝑇𝑇𝑜𝑜𝑜𝑜 = ∑ max (𝐴𝐴𝑘𝑘−𝑆𝑆𝑜𝑜𝑜𝑜,0)𝑘𝑘∈𝑜𝑜𝑜𝑜
|𝑘𝑘|

 ,  (9) 

The same author also introduced the Journey Time Reliability (JTR) metric to quantify 
service reliability as experienced by passengers based on the observed journey time 
distributions. EJT has, however, found more applications such as Zhao et al. (2013) who 
applied at various levels of spatial and temporal aggregation to measure and evaluate the 
service quality for different London Overground lines. The authors' results show 
substantial variations across the different lines and times of weekday service. 
Using detailed AFC data (from the Oyster smartcard ticketing system) to measure the 
service reliability of the London Underground, Uniman et al. (2010) introduce the 
reliability buffer time (RBT) measure as the extra time that passengers need to add to their 
usual travel time to make sure they reach their destination with a certain probability. RBT 
is formulated as the difference between the 95th and 50th (median) percentiles of the travel 
time. This metric is aggregated from the OD pair to the line or network level using the 
OD flow-weighted average. The author developed another variant called Excess 
Reliability Buffer Time (ERBT) to distinguish between typical and non-recurring delays, 
and hence between incidents or disruptions. Uniman et al. (2010) define ERBT as the 
extra buffer time passengers need to arrive on time with 95% certainty, besides the normal 
buffer time for typical conditions RBTtypical. Figure 9 provides an illustration of the 
ERBT as the difference between RBToverall and RBTtypical. As presented in the figure, it 
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is also possible to estimate the proportion of trips that are unpunctual given the accepted 
reliability standard (95 %). These measures are, however, more appropriate in the context 
of high-frequency services where passenger arrival pattern is considered uniform 
(Bagherian et al., 2016). 

 
Figure 9. Illustration of the RBT and ERBT measures by Uniman et al. (2010). 

Given the availability of better passenger demand data from AFC systems, NS has used 
a new method to calculate passenger punctuality since 2015 (Wolters, 2016). The new 
method addresses the limitations of the previous metric, in equation (7), that is based on 
forecasted demand, e.g., limited station and transfer coverage and peak hour disparities. 
Based on check-in times from PT smart cards, the new metric is simply the ratio of 
promised and total trips, see the formulation in equation (10), where 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is the total 
number of trips, and 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜏𝜏) is the number of trips within the promised total travel 
time plus a threshold 𝜏𝜏.  

𝑃𝑃𝑃𝑃2(𝜏𝜏) = 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜏𝜏)

𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
   (10) 

𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 can be directly inferred from the check-in time of every trip which is used to 
determine the promised journey for the individual OD passenger. The promised journey 
is linked to the earliest possible realized arrival time if the next, after check-in time, 
scheduled departure is taken (Wolters, 2016). 
In their research on passenger-oriented measures of reliability, Bagherian et al. (2016) 
introduce two measures, i.e., one focusing on punctuality (deviation from the schedule) 
and another on predictability (day-to-day variation). The former, which is more relevant 
here, measures the schedule deviation (𝑆𝑆𝑆𝑆) of individuals’ actual travel time from the 
scheduled one. Given an OD pair and based on a sufficient sample of AFC data on this 
pair, 𝑆𝑆𝑆𝑆 is defined as the ratio of the excess delay to travel time at a targeted percentile 
𝜎𝜎, e.g. median (𝜎𝜎 = .5)  or 95th-percentile (𝜎𝜎 = .95).  

Let (𝑖𝑖, 𝑗𝑗) be a given OD pair, the scheduled deviation measure 𝑆𝑆𝐷𝐷(𝑖𝑖,𝑗𝑗) can be formulated 
as in equation (11), where 𝑇𝑇(𝑖𝑖,𝑗𝑗) is the actual/observed distribution of passengers’ travel 
times between OD pairs (𝑖𝑖, 𝑗𝑗). 𝛿𝛿𝑇𝑇 

(𝑖𝑖,𝑗𝑗) is the distribution of the deviation between the 
actual and scheduled passenger travel times, i.e., excess delay distribution. 
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𝑆𝑆𝐷𝐷(𝑖𝑖,𝑗𝑗) = 𝐸𝐸[𝛿𝛿𝑇𝑇 𝜎𝜎
(𝑖𝑖,𝑗𝑗)

𝑇𝑇𝜎𝜎
(𝑖𝑖,𝑗𝑗) ]   (11) 

Since passenger trips must be matched to the service schedule/timetable, the calculation 
of the measure often requires more parameters and computations, e.g., trips with transfers, 
transfer points, alternative routes, and walking times. Bagherian et al. (2016) applied the 
measure to the public transport network of The Hague, the Netherlands. The authors 
computed the SD measures for specific values of 𝜎𝜎 and at various spatial-temporal levels, 
from a single OD pair to a network-wide evaluation using weighted averages. 

2.3.3. Socio-economic assessment 

Another possible approach for monitoring passenger punctuality is using the economic 
costs of passengers' unpunctuality. In their comprehensive assessment of the costs of 
flight delays in the United States, Ball et al. (2010) account for different cost components 
such as passenger costs comprising delays, cancellations, missed connections, and other 
costs for the operators. Similarly, the reliability of PT services can be assessed using 
economic costs, e.g., by multiplying the minutes of service delay with the cost per minute 
delay., the costs per minute of delay comprise both the direct costs to service providers 
per minute and the economic cost to late passengers per minute. 
In their study of how PT service reliability can be incorporated into economic 
assessments, such as cost-benefit analysis (CBA), van Oort (2016) demonstrates how to 
calculate the impact on passengers. The author combined variants of previously presented 
metrics, e.g., 𝐸𝐸𝐸𝐸[𝐻𝐻], with existing economic valuation parameters such as the value of 
time (in Euros/hour) and the value of reliability (in Euros/hour of standard deviation). 
These valuation parameters are generally different for different trip purposes, e.g., 
business, commuting or other trips. Based on simulated AVL and APC data, van Oort 
(2016) illustrates the approach in a CBA application on a PT line in Utrecht, The 
Netherlands. 
In an extensive review of passenger-centric rail planning, a related common approach 
from the literature is mentioned by Parbo et al. (2016) which emphasizes travel behaviour. 
Quantifiable attributes, such as valuation of travel and waiting time, headway, and delays, 
affect passengers’ travel behaviour. These are often modelled as components of a 
generalized travel cost function (Parbo et al., 2016). Using extensive data and/or 
simulations allows for more accurate monitoring of these valuations, and hence the 
impact of unpunctuality on passengers’ travel behaviour and perception of PT service 
reliability. 

2.3.4. Bus services 

Methods for monitoring passenger punctuality in rail transport often involve comparing 
actual arrival times with scheduled times at specific stations. In contrast, bus services 
present unique challenges, such as bus overtaking, which can disrupt the scheduled order 
of arrivals. Barabino et al. (2015) propose a passenger punctuality measure based on AVL 
data, focusing on the first bus to arrive at a stop, even after overtaking. The measure is 
defined as the fraction of passengers who will be served within an acceptably short 
interval after they arrive. This method provides a more accurate assessment of passenger 
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punctuality and enables monitoring in each direction of a bus route in a transit network, 
as well as for every bus stop and time interval. 
Focusing on bus transit, Diab et al. (2015) reviewed the differences between passengers’ 
and transit agencies’ perspectives on bus service reliability including punctuality. The 
authors identified the main gaps between these two perspectives for planners and 
decision-makers aiming for reliability improvement strategies for bus services. An 
important gap is the drawbacks of OTP standards in capturing variations in waiting and 
running times which affect more travel decisions of bus riders. 
By reviewing (more than twenty) measures of bus service reliability from the travellers’ 
perspective, Gittens and Shalaby (2015) found that they are generally based on 
monitoring arrivals at the destination, waiting times at the origin stop, and consistency in 
waiting and travel times. However, the authors highlight that no measure captures all 
these aspects. A new composite indicator, i.e., journey time buffer index (JTBI), is 
introduced combining aspects of travel time (such as RBT), schedule adherence (such as 
OTP), headway regularity (such as 𝐶𝐶𝐶𝐶𝐶𝐶), and waiting time (such as 𝐸𝐸𝐸𝐸). The authors 
formulate JTBI by distinguishing between long- and short-headway bus services. As a 
composite metric, the JBTI formulations include an arrival penalty (accounting for bus 
travel time variability) and a wait penalty (capturing the variability in departure times at 
the origin stop). Although lacking detailed AFC and APC data, Gittens and Shalaby 
(2015) show that JTBI is better suited, compared to the reviewed metrics, to identify the 
factors contributing to unreliable bus service from a passenger perspective. 

2.4. Summary and discussion 

As passenger punctuality in PT systems affects travellers' experience and operators’ 
operational efficiency, a number of alternative metrics have been developed to monitor 
the punctuality and reliability of PT services from passengers' perspectives. For 
passengers, punctuality impacts their travel experience, including waiting and travel 
times, and comfort. For operators, it is linked to operational efficiency and economic 
costs. OTP is commonly used by PT operators and agencies but has limitations, e.g., not 
capturing the severity of delays or passenger punctuality. Various metrics, other than 
OTP, e.g., DI, CPM and ESA, have been introduced and employed to assess PT 
punctuality. However, better monitoring and improving passenger punctuality can 
enhance both satisfaction from a passenger perspective and PT ridership and long-term 
economic performance from an operator’s point of view. 
Choosing appropriate metrics for monitoring passenger punctuality in PT systems is 
essential. Frameworks like EN-13816 highlight the importance of incorporating 
passenger perspectives in monitoring PT service reliability. Therefore, more passenger-
oriented metrics, like EWT and PTT, have been first developed to offer better alternatives 
for monitoring punctuality. These metrics aim to capture different aspects of punctuality 
and service reliability impacting passengers’ travel experience, e.g., passengers' waiting 
and travel times. 
Thanks to the emergence of new data collection systems, there has been a shift towards 
developing more passenger-oriented metrics to assess how well passengers reach their 
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destinations within predefined time windows, considering their entire journey. Methods 
based on general demand forecasts and more detailed automatic data collection (AFC, 
AVL, APC) provide valuable improvements in monitoring passenger experiences 
including punctuality. Metrics such as APL, RBT, and EJT are used to evaluate service 
quality from a passenger perspective. Economic-based methods, and others specific to 
bus traffic, can further improve measurements of passenger punctuality.  
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3. Qualitative comparisons 

One of the main objectives of this study is to explore different measures of passenger 
punctuality that can be used to capture the reliability performance of PT systems. In the 
previous section (section 2), we reviewed some existing literature and practices on 
measuring punctuality in different transport systems and identified several punctuality 
metrics, including passenger-centric ones, that could be applicable for our purpose, see 
Table 2 for an overview. 
Table 2. Overview of reviewed metrics for monitoring punctuality in PT systems. 

Categories Passenger 
perspective 

Metrics 

OTP-variants No On-Time Performance (OTP), Time-to-X, En-route Schedule Adherence 
(ESA), Delay Increment (DI), Combined Performance Measure (CPM). 

 Yes Passenger-weighted OTP, passenger punctuality scores (𝑃𝑃𝑃𝑃1 and 𝑃𝑃𝑃𝑃2), 
Average Passenger Lateness (APL), Total Passenger Lateness (TPL) 

Passenger waiting 
& travel time 

No Equivalent waiting time 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 
Short headways: Expected waiting (EW), Excess Waiting Time (EWT), 
reliability buffer time (RBT), Excess Reliability Buffer Time (ERBT). 
Long headways: Potential Travel Time (PTT) 

 Yes Short headways: Expected (passenger-weighted) waiting time (𝐸𝐸𝑊𝑊𝑝𝑝), 
OD-aggregated RBT and ERBT. 
Long headways: Excess journey time (EJT), schedule deviation (SD) 

Miscellaneous No Other tools: Total/average delay, Distributions (running time, schedule 
deviations), Risk of delay, Standard deviation, Coefficient of variation, 
Maximum delay, Delay-at-risk. 

 Yes Total or average passenger delays. 
Economics (using passenger demand): Value of reliability, generalized 
travel costs. 
Bus-specific (using passenger demand): Fraction of served bus 
passengers served (within a threshold), journey time buffer index (JTBI). 

In this section, we will conduct a more detailed qualitative assessment of these metrics, 
based on different aspects for use in PT systems such as relevance, effectiveness, 
challenges, and potential. We will also compare them with each other and with the 
conventional metrics such as OTP, which is widely used by PT operators and authorities. 
Considering data availability for the case study, this assessment ends by selecting some 
suitable measures for further quantitative analyses in section 4. 

3.1. Relevance for PT services 

One important aspect in assessing passenger punctuality metrics is its relevance to PT 
systems in general. Given the specificities of PT systems compared to other transport 
systems, relevant passenger-centric metrics should be able to capture the punctuality in 
the passenger travel experience throughout the entire journey. For instance, most of the 
reviewed passenger-centric metrics differ from the traditional OTP, which only measures 
the schedule adherence of the PT vehicles often at terminal stations/stops, without 
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considering relevant aspects for PT systems such as the passengers’ travel times, waiting 
times, transfers, crowding, and comfort. While OTP may be relevant for the planners of 
the PT operators and agencies, it is less relevant for reflecting the PT passenger 
experience, which may vary depending on certain characteristics of the studied PT 
system, e.g., service frequency, passenger demand, and network coverage. 
Although applied to monitor punctuality on passenger rail transport, the reviewed OTP 
variants, such as CPM, DI/DC, and Time-to-X, are not passenger-centric since they 
capture schedule deviations of trains rather than passengers. While such metrics can be 
used for rail infrastructure management, e.g., monitoring infrastructure failures and 
performance regimes, they are, as such, less relevant for use in PT systems to monitor 
passenger punctuality and service reliability. Although also an OTP variant, the ESA 
metric was adopted for monitoring the punctuality of the PT system in New York, but 
was replaced soon after as it is less suitable for short-headway PT services (Cramer et al., 
2009). Based on demand estimates or forecasts, some OTP-variants, e.g., 𝑃𝑃𝑃𝑃1 and 
passenger-weighted OTP, are used to improve the relevance of the metric for monitoring 
punctuality in passenger transport including PT systems. 
The majority of the reviewed metrics are passenger-centric or intended proxies for it since 
they can (in-)directly capture some aspects of the passenger journey experience, such as 
passenger waiting and travel time. This passenger-centricity is an important aspect of the 
relevance of the reviewed metric. Table 3 presents an overview of relevant metrics for 
passenger-centric monitoring of punctuality in PT systems. For each metric, the table 
describes the corresponding practical/theoretical application and passenger transport 
system. 

Table 3. Comparison of the relevance of certain metrics for monitoring punctuality in PT systems. 
 Use in practice or research Transport system Unit 
APL & 
TPL 

Applied by the British IM, e.g., for performance 
metric/regimes of different train/contract groups and 
periods. 

National passenger rails Time 

𝑷𝑷𝑷𝑷𝟏𝟏 & 
𝑷𝑷𝑷𝑷𝟐𝟐 

Applied by Dutch IM for monitoring train passenger 
punctuality. 

National passenger rails Percentage 
(%) 

𝑬𝑬𝑬𝑬 Theoretically proven for randomly arriving 
passengers at a constant rate. 

PT (high-frequency) Time 

𝑬𝑬𝑾𝑾𝒑𝒑 Introduced in the research as a better alternative to 
𝐸𝐸𝐸𝐸 given accurate data on passenger arrival rates 

PT (high-frequency) Time 

𝑬𝑬𝑬𝑬𝑬𝑬 Applied by London Transport to monitor service 
reliability. 

PT Time 

𝑬𝑬𝑬𝑬𝑻𝑻𝒔𝒔 & 
𝑷𝑷𝑷𝑷𝑻𝑻𝒔𝒔 

Theoretically defined 2-percentile departure times 
and 95-percentile arrival times, respectively. 

PT (low-frequency) Time 

𝑹𝑹𝑹𝑹𝑹𝑹 & 
𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 

Introduced in the research and illustrated in a case 
study from the London Underground network. 

PT (high-frequency, 
metro) 

Time 

𝑬𝑬𝑬𝑬𝑬𝑬 Introduced in the research and illustrated in a case 
study from the London Overground network. 

PT (rail) Time 

𝑱𝑱𝑱𝑱𝑱𝑱𝑱𝑱 Introduced in the research and illustrated in a case 
study from a bus network in Ontario. 

PT (bus) Normalized 
index (%) 

𝑺𝑺𝑺𝑺 Introduced in the research and illustrated a case 
study from the PT network in the Hague. 

PT None (ratio) 

A few of the metrics in Table 3 have already been applied and used in practice. Apart 
from  𝐸𝐸𝐸𝐸𝐸𝐸 and metrics with applications in the passenger rail systems, e.g., for 
monitoring train passenger punctuality and train contract performance, all of the reviewed 



K2 Working Paper 2024:9   29 

metrics in Table 3 are so far only introduced in the research and illustrated in a (real-
world) case study for different type of PT systems. 

The relevance of most of the introduced metrics is often related to the headway/frequency 
of the PT system. For instance, 𝐸𝐸𝐸𝐸𝑇𝑇𝑠𝑠 and 𝑃𝑃𝑃𝑃𝑇𝑇𝑠𝑠 are introduced to be applied in the case 
of low-frequency PT services, whereas 𝑅𝑅𝑅𝑅𝑅𝑅 and 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 are more relevant when 
monitoring services with short headways such as during peak hours. Other metrics have 
been constructed to be applied to specific PT systems, e.g., 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 for bus traffic. Note, 
however, that a metric might be relevant for use in certain PT services even if there are 
no reviewed applications or case studies. For instance, although applied to intercity 
passenger rail, 𝑃𝑃𝑃𝑃1 and 𝑃𝑃𝑃𝑃2 can be relevant for use for PT systems such as local commuter 
rails. 

When assessing the relevance of these metrics for use in PT systems, it is important to 
consider the measurement unit (last column in Table 3) and whether it allows for cross-
service and cross-mode comparisons. PT-relevant metrics should be scalable across 
different levels, e.g., from stop, route & trip to all systems, and consistently enable 
comparisons among routes/lines and between different PT modes and systems. 

3.2. Monitoring punctuality of PT passenger  

To effectively and accurately monitor passenger punctuality, metrics should represent the 
real impact that is ultimately experienced by the passengers, and therefore go beyond 
assessing the PT service provision. In other words, these metrics should objectively 
capture the real passenger experiences and reflect the service punctuality from the 
passenger's viewpoint. Effective metrics should therefore comprehensively capture all (or 
the main) aspects of the passenger journey experience. Moreover, they should also be 
useful for the PT agency and other stakeholders in that they provide actionable insights 
into how the service quality can be improved, see the next subsection for more on this. 
Accurate metrics should, however, objectively and precisely capture the details of the 
passenger journey experience including waiting times, travel times, and transfers. 

To assess the effectiveness and accuracy of the reviewed metrics, it is important to 
compare them in terms of the aspects that each metric is capturing from the passenger 
journey experience, the most disaggregated level of the metric, and whether it is based on 
an improvement of one or more other metrics. Moreover, schedule adherence is not 
always a major concern from a passenger's point of view as passengers perceive headway 
adherence or service regularity as more important in high-frequency PT services such as 
during peak hours (Parbo et al., 2016). Focusing on these elements, Table 4 compares 
the effectiveness and accuracy of reviewed passenger-centric metrics in monitoring 
passenger punctuality in PT systems.  

Several metrics have been developed to provide a more passenger-centric perspective of 
punctuality compared to traditional metrics such as OTP. As indicated in Table 4, metrics 
like 𝑃𝑃𝑃𝑃1 aim to improve OTP by focusing on journey times including transfers which are 
more critical to the passenger experience than vehicle delay at certain intermediate or 
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final stops. Moreover, 𝑃𝑃𝑃𝑃1 operates at a higher level focusing on specific routes with 
transfers to/from other routes. Given more detailed AFC data, the latter can be further 
improved, using 𝑃𝑃𝑃𝑃2, to operate at the passenger trip level to capture more accurate 
individual journey times. 

Table 4. Effectiveness and accuracy of reviewed passenger-centric metrics in monitoring passenger punctuality in PT 
systems. 

Metric Captured from passenger travel experience Minimal level Based on (if any) 

𝑷𝑷𝑷𝑷𝟏𝟏 Journey time Route 𝑶𝑶𝑶𝑶𝑶𝑶 

𝑷𝑷𝑷𝑷𝟐𝟐 Journey time Trip 𝑷𝑷𝑷𝑷𝟏𝟏 

𝑬𝑬𝑬𝑬 Waiting time (peak hours)  Stop (departure)  

𝑬𝑬𝑬𝑬𝑬𝑬 Waiting time Stop (departure) 𝑬𝑬𝑬𝑬 

𝑬𝑬𝑾𝑾𝒑𝒑 Waiting time (peak hours) Stop (departure) 𝑬𝑬𝑬𝑬 

𝑬𝑬𝑬𝑬𝑻𝑻𝒔𝒔 Waiting time (off-peak hours) Stop (departure) 𝑬𝑬𝑬𝑬𝑬𝑬 

𝑷𝑷𝑷𝑷𝑻𝑻𝒔𝒔 Travel time (off-peak hours) Stop (arrival)  

𝑹𝑹𝑹𝑹𝑹𝑹 Travel time (typical) Trip 𝑷𝑷𝑷𝑷𝑻𝑻𝒔𝒔 

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 Travel time (atypical) Trip 𝑹𝑹𝑹𝑹𝑹𝑹 

𝑺𝑺𝑺𝑺 Travel time Route & trip 𝑷𝑷𝑷𝑷𝑻𝑻𝒔𝒔 

𝑬𝑬𝑬𝑬𝑬𝑬 Journey time Trip  

𝑱𝑱𝑱𝑱𝑱𝑱𝑱𝑱 Peak or off-peak journey time Trip 𝑬𝑬𝑬𝑬,𝑹𝑹𝑹𝑹𝑹𝑹 

Research has shown that waiting time is perceived by PT passengers to be more important 
than in-vehicle time, especially during peak hours (Wardman, 2001, Mishalani et al., 
2006). It is therefore important to accurately capture such aspects of the passenger journey 
using metrics such as 𝐸𝐸𝐸𝐸, 𝐸𝐸𝑊𝑊𝑝𝑝, and 𝐸𝐸𝐸𝐸𝐸𝐸 which are particularly suitable when studying 
specific PT travel periods, e.g., peak or off-peak hours. 𝐸𝐸𝐸𝐸 captures peak-hour waiting 
times at passengers’ departures. Given accurate data on passengers’ arrival rates, while 
𝐸𝐸𝑊𝑊𝑝𝑝 improves the latter by operating at different travel periods. In the absence of such 
data, 𝐸𝐸𝐸𝐸𝐸𝐸 is an improvement of 𝐸𝐸𝐸𝐸 as it also operates during off-peak travel periods. 
𝐸𝐸𝐸𝐸𝑇𝑇𝑠𝑠 is suggested as an improvement of 𝐸𝐸𝐸𝐸𝐸𝐸 but is more suitable for long-headway PT 
services during off-peak hours. In this case, 𝑃𝑃𝑃𝑃𝑇𝑇𝑠𝑠 is a complementary metric to capture 
the passengers’ budgeted travel times, i.e., part of the passenger journey other than 
waiting times. 

To gain more insights into the reliability of passengers’ travel times, metrics like 𝑅𝑅𝑅𝑅𝑅𝑅 
and 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 are suitable at the trip level. Unlike the former which focuses on typical or 
recurrent delays, the latter is more accurate for capturing non-recurrent scenarios. Both 
metrics can be used to understand how much additional time passengers budget for 
potential delays. Operating at both route and trip levels, 𝑆𝑆𝑆𝑆 focuses on the overall travel 
time variations and their impact on passenger experiences. Including all of the passenger 
journey time, 𝐸𝐸𝐸𝐸𝐸𝐸 provides a more comprehensive assessment compared to the previous 
metrics focusing on either waiting or travel times. 

Building upon the previous metrics, 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 combines elements from 𝐸𝐸𝐸𝐸 and 𝑅𝑅𝑅𝑅𝑅𝑅, 
focusing on journey times either during peak or off-peak hours. Although developed for 
bus services, 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 allows therefore to capture at the same time passengers’ waiting and 
travel time variations at both route and trip levels. 
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3.3. Implementation in PT systems 

When assessing the reviewed metrics, it is also essential to consider their usability and 
practicality. Ease of implementation is a key usability aspect which involves, among 
others, the type and amount of data required, calculation complexity, and integration with 
systems already in place. Another factor is the operational feasibility encompassing 
support for real-time monitoring, scalability across different PT systems, as well as 
maintenance. Additionally, interpretability and actionability are important, ensuring that 
metrics provide clear, actionable insights and can be effectively communicated to all PT 
stakeholders. Cost-effectiveness and adaptability are also essential, weighing the costs of 
implementation and operation against the possible benefits, and making sure the metrics 
can be adjusted to different contexts. See Table 5 for a comparative overview of some of 
these main aspects with a focus on the improved versions of the reviewed metrics. 

Table 5. Usability and practicality of reviewed passenger-centric metrics in PT systems. 
Metric Implementation Feasibility Actionability 

𝑷𝑷𝑷𝑷𝟐𝟐 Detailed AFC data, moderate 
complexity, simple 
integration. 

Monitoring accuracy, 
scalable and periodic 
monitoring. 

Simple visualization, easy 
interpretation. 

𝑬𝑬𝑾𝑾𝒑𝒑 Passenger arrival rates, 
moderate integration. 

Robust monitoring of waiting 
times. 

Actionable insights on waiting 
times 

𝑬𝑬𝑬𝑬𝑻𝑻𝒔𝒔 Simple calculations and easy 
integration. 

Periodic off-peak and real-
time monitoring, scalable. 

Easy interpretation, Actionable 
insights on off-peak waiting time. 

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 Detailed a/typical travel time 
data, moderate complexity, 
integrates well (AFC in 
place). 

Recurrent/exceptional 
delays, periodic monitoring, 
less scalable(maintenance). 

Actionable insight on delay 
causes, complex visualizations 
and interpretation. 

𝑺𝑺𝑺𝑺 Detailed travel time data, 
high complexity, integrates 
well (if AFC data is used). 

Travel time deviations, 
monitoring details, less 
scalable (calculations), 
periodic monitoring. 

Complex visualizations and 
interpretation. 

𝑬𝑬𝑬𝑬𝑬𝑬 Detailed AFC journey data, 
simple calculations and easy 
integration. 

Journey time, scalable and 
periodic monitoring. 

Insights on service quality from 
both demand and supply 
perspectives. 

𝑱𝑱𝑱𝑱𝑱𝑱𝑱𝑱 Moderate complexity and 
easy integration. 

Scalable, periodic and real-
time monitoring. 

Combined and actionable insights 
on waiting/travel times during 
off/peak hours. 

In terms of ease of implementation, 𝑃𝑃𝑃𝑃2 is an improved metric but requires detailed AFC 
data and involves moderately complex calculations to infer the route of the passenger trip 
based on AFC information. Thus, the metric integrates well with AFC systems already in 
place. Focusing on passengers’ waiting time, 𝐸𝐸𝑊𝑊𝑝𝑝 requires accurate data on passengers' 
arrival rates which is not always possible or easy to collect, e.g., bus passengers, adding 
moderate integration needs. 𝐸𝐸𝐸𝐸𝑇𝑇𝑠𝑠 is another improved metric for monitoring off-peak 
waiting times with very low complexity and easy integration with the existing system for 
monitoring actual departure times at stops/stations. Similar to 𝑃𝑃𝑃𝑃2, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 also requires 
detailed passenger travel time data during typical/exceptional traffic conditions, e.g., 
based on detailed AFC data, which involves more complex calculations to infer the travel 
times of the different passenger trips data. The metric can integrate well if AFC data is 
used. 𝑆𝑆𝑆𝑆 is a different (ratio) and more complex metric to calculate but has similar data 
requirements as 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸. Defined as the passenger excess journey time compared to the 
scheduled one, 𝐸𝐸𝐸𝐸𝐸𝐸 can be simply calculated for an OD trip given detailed AFC data. 
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Although 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 requires some calculations, it involves simple formulas and can easily 
integrate with existing AVL systems. 

As for the practical and operational feasibility, 𝑃𝑃𝑃𝑃2 provides more accurate monitoring 
compared to 𝑃𝑃𝑃𝑃1 and allows for periodic and scalable monitoring with existing AVL and 
AFC systems. With its higher data requirements (i.e., passenger arrival rates), 𝐸𝐸𝑊𝑊𝑝𝑝 can 
provide more robust monitoring of passenger waiting time over longer periods with 
variable passenger demands. Focusing on off-peak periods, 𝐸𝐸𝐸𝐸𝑇𝑇𝑠𝑠 is a scalable metric for 
both period and real-time monitoring. Practical to monitor different types of delays 
(recurrent/exceptional), 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 allows for periodic monitoring but is less scalable as it 
requires some manual control and maintenance. Similarly, 𝑆𝑆𝑆𝑆 also requires more 
calculations but offers more detailed monitoring of passengers’ travel times. A more 
scalable variant is 𝐸𝐸𝐸𝐸𝐸𝐸 as it allows for simple monitoring of passenger excess journey 
times. facilitates directly actionable insights with clear visualizations, supporting periodic 
monitoring efficiently. 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 only requires basic AVL data and can therefore allow for 
scalable and real-time monitoring of both passenger waiting and travel times. 

The actionability and interpretability of the reviewed metrics ensure that the insights they 
provide can be effectively used by PT stakeholders. For instance, 𝑃𝑃𝑃𝑃2 offers simple 
visualizations and is easy to interpret, making it straightforward for both passengers and 
PT operators/agencies to use, e.g., for the latter to improve their service quality. 𝐸𝐸𝑊𝑊𝑝𝑝 
provides actionable insights specifically focused on passenger waiting times, which can 
guide targeted interventions to reduce waiting times at important stops/stations. 𝐸𝐸𝐸𝐸𝑇𝑇𝑠𝑠 is 
particularly useful for off-peak periods, offering more insights on how to improve service 
quality during these periods. 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, while more complex, provides valuable insights into 
the causes of delays, distinguishing between recurrent and exceptional delays, though its 
visualizations and interpretations may be more challenging for passengers to understand. 
𝑆𝑆𝑆𝑆 delivers detailed insights into travel time deviations, but its complexity in both 
visualization and interpretation requires more analysis. 𝐸𝐸𝐸𝐸𝐸𝐸 offers comprehensive 
insights into service quality from both demand and supply perspectives, providing ideas 
that can inform strategic decisions. Finally, 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 is useful to gain actionable insights on 
both waiting and travel times of PT passengers, either during peak or off-peak hours. 

3.4. Summary and selected measures 

Based on the qualitative assessment of various passenger-centric metrics for use in PT 
systems, we summarize the analysis by grouping the metrics into different generations 
based on their data requirements, calculation complexity, and the type of insights they 
provide. The objective is to identify possible metrics for further quantitative analysis in 
the next section based on a real-world case study. 
Given limited data availability and the project time constraints, some of the reviewed 
metrics are selected for the quantitative assessment based on criteria or characteristics of 
the assessed metrics, e.g., data requirements and PT services, see the summary in Table 
6. Additionally, passenger journey times and types of calculation are also included in the 
summary table. As indicated in the table, metrics that are between parenthesis are short-
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listed for further quantitative analyses in the case study in section 4. Different metrics 
have been selected based on one or a combination of characteristics that are specific to 
the metric and the case study. 

Besides OTP, Table 6 includes only improved versions of the reviewed metrics, i.e., 
metrics that are the improvement of other reviewed metrics. OTP is included as it is a 
traditional metric which is commonly used in practice. For this, OTP is also chosen as a 
reference metric in the case study. 

In addition to OTP, the case study includes the 𝑃𝑃𝑃𝑃2 metric since it is a passenger-weighted 
OTP variant, i.e., a passenger punctuality metric, that captures both passengers waiting 
and travel times. Another reason for selecting this metric is that it can be used for PT 
services during both peak and off-peak periods. For this same reason and simpler 
calculations, 𝐸𝐸𝐸𝐸𝐸𝐸 is also selected. However, it focuses more on passenger travel time, 
which is important during off-peak hours, and brings a different perspective from OTP 
and 𝑃𝑃𝑃𝑃2. 

Since the case study includes separate analyses for peak and off-peak hours, 𝐸𝐸𝑊𝑊𝑝𝑝 is 
selected and tested during peak hours as it is more suitable during this period. It also 
requires simpler calculations and brings a complementary perspective to the other 
selected metrics as it focuses on passenger waiting times. 

Table 6. Summary of some assessed metrics including characteristics that are used as selection criteria for the case 
study.  

 Data requirement Passenger journey PT service Calculations 

Metric 
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(OTP) X    X X    X 

(𝑷𝑷𝑷𝑷𝟐𝟐) X X X X X X    X 

(𝑬𝑬𝑾𝑾𝒑𝒑) X X X   X    X 

𝑬𝑬𝑬𝑬𝑻𝑻𝒔𝒔 X  X  X   X X  

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 X X  X X X X  X  

𝑺𝑺𝑺𝑺 X X  X X X X X X X 

(𝑬𝑬𝑬𝑬𝑬𝑬) X X  X X X X  X  

𝑱𝑱𝑱𝑱𝑱𝑱𝑱𝑱 X  X X X X X X X X 

X if the metric has the characteristic, (.) if a metric is selected for the quantitative assessment. 
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4. Case study: Stockholm commuter 
rail 

To quantitatively assess and compare the selected metrics, Stockholm commuter rail 
during (winter) 2015 is chosen as a case study. For the sake of simplicity, the assessment 
is performed on a specific line of the network, namely Bål-Nyh, see Figure 10. 

 
Figure 10. Map of Stockholm commuter rail including the line between Bål and Nyh which is the focus of the case study 
(Frohne et al., 2014). 

First, the input data is described including different preprocessings and assumptions. 
Quantitative analyses and comparisons are performed and presented at line and station 
levels for different periods of the day, i.e., peak and off-peak hours. Finally, the 
assessment results and insights are discussed. 
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4.1. Input data and preprocessing 

This subsection details the data sets used in the case study, focusing on two primary 
sources, namely AFC-based passenger demand estimates and AVL-based traffic data. 
The preprocessing steps and key assumptions applied to these data sets are also discussed. 

4.1.1. Passenger demand estimates 

The passenger demand estimates that are used in this case study are derived from a sample 
of AFC or smart card data (between week 38 and week 42 in 2015) about passenger 
boardings at different stations of the studied line and periods. Based on such data, the 
passenger demand, i.e., OD matrices, can be estimated using different methods to infer 
the most likely paths taken by passengers, e.g., alighting stations. The passenger demand 
estimates in this case study are based on the findings of Ait-Ali and Eliasson (2019), 
employing an entropy-maximization approach to infer alighting stations (Ait-Ali and 
Eliasson, 2021). The demand estimates are presented in 15-minute intervals and are 
restricted to a typical workday during the winter of 2015 to capture standard commuting 
patterns. 
The spatial and temporal variations in passenger demand are visualized in Figure 11 and 
Figure 12, respectively. Figure 11 illustrates the spatial variation of passenger boardings 
at different stations on the studied line between Bål (in the north) and Nyh (in the south). 
The data clearly shows a concentration of boardings at central stations along the line, 
indicating e.g., transfers from/to other lines. Additionally, higher boarding numbers are 
observed at the first stations compared to the last stations in the direction of travel on the 
studied line. 
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Figure 11. Spatial variation of passenger boarding to northbound and southbound destinations during a typical workday 
in 2015 on the studied commuter line between Bål and Nyh. 

Figure 11 presents the temporal variation in passenger demand. The analysis shows high 
variations with distinct peaks during morning and afternoon rush hours. The morning 
peak (between 6:00 and 9:00) is sharper and higher compared to the afternoon peak (15:00 
and 18:00), which is flatter and more prolonged. Although the data is aggregated into 15-
minute intervals for this case study, more refined time intervals could provide a more 
granular analysis of demand patterns and commuting behaviour along the studied line. 

 



K2 Working Paper 2024:9   37 

 
Figure 12. Temporal variation of the number of passengers boarding on the studied line over a typical workday in 2015. 

Due to the limited availability of transfer demand data, some assumptions have been made 
to simplify the analysis on the studied line. First, it is assumed that trips from stations 
outside the studied line transfer at one of the central stations, namely Äs or Ke. Similarly, 
trips that end at stations outside the studied line are also assumed to transfer at these 
central stations. Furthermore, trips starting at the central stations between Äs and Ke and 
ending at stations outside the studied line are not considered in the demand data, and trips 
ending at one of these central stations and starting outside the studied line are also 
excluded. By focusing on direct trips and the primary flow of passengers along the 
selected line, the analysis avoids the complexities associated with transfer trips, which 
could be addressed in larger and more comprehensive future research projects. 

4.1.2. Traffic data 

The AVL-based traffic data in this case study is collected from Trafikverket’s Lupp 
database. It records the movement of trains in both time and space. The data set focuses 
on the same period and line as the passenger demand data, i.e., from week 38 to week 42 
in 2015, and the commuter rail line between Bål and Nyh. 
The dataset comprises approximately 100,000 rows, each representing a train movement. 
Each row includes information such as the train number, date, scheduled and actual 
departure and arrival times (accurate to the minute). The data also categorizes the type of 
movement (passing, stop, or start/final) and indicates the train's status, such as whether it 
was running, or subject to planned or acute cancellation. As for demand data, the analysis 
was limited to workdays, excluding weekends and public holidays. 
The processed traffic data is spatially and temporally visualized in Figure 13 (a) and (b), 
respectively. Figure 13 (a) shows the average number of scheduled departures per day at 
different stations along the studied line. The data shows a higher number of scheduled 
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departures at central stations between Kän and Vhe, which matches the higher passenger 
demand observed in the AFC data. The number of scheduled departures ranges from at 
least 40 per day (2 per hour assuming 20 hours of operations) to a maximum of 160 per 
day, or 8 per hour, depending on the station. The data also indicates a similar level of 
traffic supply in both directions of travel. Figure 13 (b) illustrates the average number of 
scheduled (first) train departures per hour during a workday for the studied period. The 
data indicates a higher frequency of scheduled departures during peak hours, which aligns 
with the observed higher passenger demand. The maximum number of first departures 
per hour reaches 10, with the last departure occurring after midnight and the first 
departure around 4 AM, indicating a service period of approximately 20-21 hours per 
day. 
It is important to note that both Figure 13 (a) and (b) focus on the first scheduled 
departures in the studied line considering both directions and are limited to workdays on 
the studied 5-week period. It is also worth noting that the figures represent scheduled 
traffic rather than actual traffic, which is also part of the data but will be analysed in the 
quantitative comparisons in the next subsections. Additionally, some useful information, 
such as the length of the train/vehicle, the reason for cancellations, train kilometres, and 
the type of vehicles, are not used in this study but could be valuable for future research 
projects. 
Extensive preprocessing has been performed on traffic data. For instance, movements 
between non-stopping stations have been merged and cleaned up, and missing departure 
or arrival times have been filled using average runtimes and scheduled times in the 
timetable. 

 



K2 Working Paper 2024:9   39 

 

(a) 

 

(b) 

Figure 13. Average scheduled departures per workday for (a) different stations and directions on the studied line and 
period, and for (b) different hours of the day. 



40   K2 Working Paper 2024:9 

4.2. Quantitative comparisons 

In this subsection, we analyse service punctuality and compare different quantitative 
measures of passenger punctuality by integrating the AVL and AFC-based data 
previously presented. The analysis is divided into two main parts: first, an examination 
of overall punctuality on the studied line; and second, a focus on punctuality during peak 
and then off-peak periods using selected metrics. 

4.2.1. Overall passenger punctuality 

Analysing the overall punctuality is an important initial step for evaluating the reliability 
of the commuter rail service. In this case study, we focus on a specific line, analysing 
punctuality across different periods including both peak and off-peak hours. The key 
metrics used in this analysis are OTP and PP2, which are calculated and compared using 
various delay thresholds. 

OTP and delay thresholds 
As stated earlier, OTP is typically calculated with a 3-minute threshold for commuter 
services as in our case study. In this analysis, we examine how the OTP score, measured 
at different time periods of the day, varies across different delay thresholds. The results 
are presented in Figure 14, which shows the OTP scores for various thresholds and time 
periods. The stepwise shape of the curves in the figure is due to the limited time precision 
of traffic data, i.e., up to 1 minute. All earlier arrivals are considered on time, i.e., within 
the delay threshold. 

 
Figure 14. Overall punctuality measured as OTP for different delay thresholds and time periods of the day. 
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Figure 14 shows that increasing the delay threshold leads to higher OTP scores. 
Specifically, there is a notable variation in OTP scores at lower thresholds. For example, 
the score can improve by more than 5% when the threshold increases from 1 to 2 minutes. 
Beyond a 15-minute threshold, the scores tend to stabilize, indicating that longer delays 
are infrequent and have a minimal impact on overall punctuality. 
Furthermore, the OTP scores vary significantly across different times of the day. Off-
peak hours generally show better scores compared to the average scores over the entire 
day. In contrast, the scores are lower during morning peak hours, with frequent delays, 
and even lower during the afternoon peak hours, where delays are not only more frequent 
but also longer in duration. 
It is important to note that the OTP scores presented in Figure 14 do not account for 
cancelled trains. Including these trains in the analysis, i.e., as in the CPM metric, could 
further affect the punctuality results. An analysis of the impact of cancellations on OTP 
scores has been conducted, with the results provided in the appendix. The analysis reveals 
that when cancellations are considered, OTP scores drop by 10%, regardless of the delay 
threshold. However, it is essential to distinguish between planned cancellations, which 
are scheduled long before operations, and acute cancellations, which occur suddenly. In 
both cases, timely and accurate traffic information can play a critical role in mitigating 
the negative effects of service cancellations on passengers. 

Passenger demand and train delays 
Figure 15 presents a comparison between passenger boardings and accumulated train 
departure delays across 15-minute intervals throughout a typical workday. The figure 
provides insights into the relationship between passenger demand and punctuality. Note 
that the accumulated departure delay is over all the workdays of 2015, whereas the 
passenger boardings are average per workday. 

 
Figure 15. Passenger boardings versus train departure delays per 15-minutes time interval. 
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The analysis shows that passenger boardings are highest during the morning peak, which 
corresponds with the busiest period for commuter rail services. Accumulated train 
departure delays are longer during afternoon peak hours compared to the morning period. 
Also note that accumulated delays are also high during off-peak midday period but this 
is because it is 3 hours longer than the peak periods. Both boardings and accumulated 
train departure delays are generally high during peak hours compared to other periods of 
the workday. 
These findings suggest that longer delays may affect more passengers during peak hours, 
particularly in the afternoon with longer delays. However, it is important to note that the 
figure only shows the number of boarding passengers, which can serve as a proxy for the 
number of passengers onboard and affected by the train delays. Further analyses using 
more specific punctuality metrics, e.g., PP2, are necessary to gain a deeper understanding 
of how delays impact passenger experience across different times of the day. 

Passenger and train punctuality 
To compare the overall passenger and train punctuality on the studied line, we analyse 
passenger punctuality, measured using the PP2 metric which was previously defined as 
the ratio between 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜏𝜏), or the number of passenger trips within the promised total 
passenger travel time plus a threshold 𝜏𝜏 and 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , or the total number of passenger 
trips. 
The PP2 passenger punctuality metric is compared to the train punctuality as previously 
measured using OTP. Specifically, we explore how passenger punctuality is influenced 
by different delay thresholds 𝜏𝜏 and how it compares with overall train punctuality. Figure 
16 (a) illustrates the comparison between train and passenger punctuality scores across 
various delay thresholds. Focusing on a 3-minute threshold, Figure 16 (b) shows the 
correlation between these two metrics per 15-min intervals. 
The analysis indicates that average overall passenger punctuality (in PP2 score), is lower 
than the train punctuality score (OTP score at the final station), see Figure 16 (a). 
Notably, the gap between passenger and train punctuality scores widens as the delay 
threshold decreases, indicating that higher shares of passengers experience a greater 
degree of unpunctuality when stricter delay thresholds are considered. 
When the delay threshold is set to 3 minutes, which is commonly adopted for commuter 
traffic, further disaggregated analysis was conducted to examine the correlation between 
PP2 and OTP during different 15-min intervals of the day, see Figure 16 (b). The 
disaggregated results indicate more nuanced comparisons. In about half of the 
observations, PP2 are higher than OTP, see above the 𝑦𝑦 = 𝑥𝑥 line in Figure 16 (b). This is 
consistent with the different results that are found in the reviewed literature. 
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(a) 

 

(b) 

Figure 16. Comparison of train and passenger punctuality scores (a) for different delay thresholds, and (b) for a 3-min 
threshold in 15-min time intervals. 

This initial comparative analysis highlights the importance of considering passenger-
centric metrics, such as PP2, alongside train-centric metrics when evaluating the overall 
punctuality of commuter rail services. Passenger metrics such as PP2 can better capture 
passenger experience, particularly during the different travel periods. Since disaggregate 
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analyses show more nuanced results, the following section further analyse passenger 
punctuality by using other selected metrics and focusing on two different periods of the 
day, namely peak and off-peak hours. 

4.2.2. Passenger punctuality during off-peak hours 

We first focus on analysing passenger punctuality during off-peak hours using the 
selected 𝐸𝐸𝐸𝐸𝐸𝐸 metric, which is suited for long-headway services typical of off-peak hours. 
The 𝐸𝐸𝐸𝐸𝐸𝐸 metric is compared to the passenger punctuality PP2. As discussed in the 
literature, the calculation of 𝐸𝐸𝐸𝐸𝐸𝐸 is based on the distribution of actual travel times relative 
to the average scheduled times for each origin-destination (OD) pair. 
Figure 17 illustrates the distribution of actual travel time percentiles compared to the 
average scheduled time for all trips on the studied line during off-peak hours. The data 
reveals that the average scheduled travel time across the line is approximately 34 minutes. 
However, half of the trips (50th percentile) have an actual travel time of around 28 
minutes, while the 90th percentile of trips has up to an hour and 10 minutes in actual travel 
time. 

 
Figure 17. Distribution of actual travel time compared to the average scheduled time on the studied line during off-peak 
hours. 

Using the distributions for each OD pair, combined with passenger ridership data, the 
passenger-weighted 𝐸𝐸𝐸𝐸𝐸𝐸 is calculated. Figure 18 provides a visual comparison of 
punctuality scores across different OD pairs on the studied line. Figure 18(a) shows the 
PP2 scores calculated with a 3-minute delay threshold, while Figure 18(b) presents the 
passenger-weighted 𝐸𝐸𝐸𝐸𝐸𝐸 scores. In both figures, lower punctuality scores are in red, 
indicating areas with more significant punctuality issues, whereas higher scores are 
shown in blue. 
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(a) 

 

(b) 

Figure 18. Spatial distribution of (a) PP2 scores at 3-min threshold and (b) passenger-weighted EJT scores during off-
peak hours. 
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The comparison between 𝐸𝐸𝐸𝐸𝐸𝐸 and PP2 reveals that both metrics generally identify similar 
OD pairs with punctuality issues. However, there are differences in the specific pairs 
highlighted as least punctual, see the red-encircled regions in Figure 18(a). PP2 
highlights many northbound pairs where a significant number of passengers arrive more 
than 3 minutes late. On the other hand, 𝐸𝐸𝐸𝐸𝐸𝐸 reflects a different aspect of the passenger 
experience by highlighting the (southbound) pairs (in dark red in Figure 18 (a) and (b)) 
where the total travel time deviates more significantly from the scheduled time. 
To summarize the results, Table 7 presents the punctuality scores for the entire line during 
off-peak hours. The OTP score, measured with a 3-minute delay threshold, is 96.3%, 
which is slightly higher than the PP2 score at 94.2%. The overall 𝐸𝐸𝐸𝐸𝐸𝐸 score shows an 
average excess travel time of around 19 seconds per passenger. 

Table 7. Summary of the scores for tested punctuality metrics during off-peak hours. 
Punctuality metric  Score (unit) 

OTP at 3-min delay threshold 96.3% 

PP2 at 3-min delay threshold 94.2% 

Passenger-weighted average EJT 19 seconds per passenger 

Since 𝐸𝐸𝐸𝐸𝐸𝐸 is an absolute metric expressed in minutes per passenger, it cannot be directly 
compared to the binary/percentage-based scores like OTP and PP2. However, the 𝐸𝐸𝐸𝐸𝐸𝐸 
score is more flexible as it has the advantage of not requiring a predefined delay threshold 
for its calculations. Besides, it is particularly suitable for services with long headways 
during off-peak hours. Although 𝐸𝐸𝐸𝐸𝐸𝐸 cannot be compared to other binary metrics like 
PP2, it is possible to explore their correlation. Figure 19 presents a scatter plot showing 
the relationship between PP2 and 𝐸𝐸𝐸𝐸𝐸𝐸 scores across different OD pairs during off-peak 
hours.  

 
Figure 19. Scatter plot showing the correlation between EJT and PP2 scores during off-peak hours. 

The scatter plot in Figure 19 indicates a correlation between these two metrics: higher 
𝐸𝐸𝐸𝐸𝐸𝐸 scores (longer excess journey times for passengers) are associated with lower PP2 
scores (fewer passengers arrived within the promised arrival time), and vice versa. The 



K2 Working Paper 2024:9   47 

correlation is particularly strong for lower 𝐸𝐸𝐸𝐸𝐸𝐸 values and higher PP2 scores. Higher 
values of 𝐸𝐸𝐸𝐸𝐸𝐸, which are associated with lower PP2 scores, show more variance. 
These findings show that both passenger metrics capture aspects of passenger punctuality 
but from different perspectives. 𝐸𝐸𝐸𝐸𝐸𝐸 is useful in identifying areas where total travel time 
is significantly impacted, while PP2 highlights delays that affect many passengers, even 
if those delays do not consistently prolong the total travel time. In the following section, 
we will extend this analysis to cover peak-hour periods, examining how passenger 
punctuality varies with an additional metric focusing on passengers’ waiting time, i.e., 
expected (passenger-weighted) waiting time (𝐸𝐸𝑊𝑊𝑝𝑝). 

4.2.3. Passenger punctuality during peak hours 

The focus here is on analysing passenger punctuality during peak hours, specifically 
during the morning and afternoon periods, using previously tested metrics (i.e., OTP, 
PP2, and 𝐸𝐸𝐸𝐸𝐸𝐸) and 𝐸𝐸𝑊𝑊𝑝𝑝 focusing on expected waiting times. 

We first compare PP2 (3-min threshold) results between the morning and afternoon peak 
hours. Figure 20 illustrates the spatial distribution of PP2 scores across all OD pairs for 
both time periods, with Figure 20 (a) and (b) showing the morning and afternoon peak 
hours, respectively. A common colour coding is used across both figures for direct 
comparison. 

 

(a)                                                             (b) 

Figure 20. Spatial distribution of PP2 scores during (a) morning and (b) afternoon peak hours. 

The results indicate that PP2 scores are generally lower during the afternoon peak hours, 
as indicated by more dark red areas in Figure 20(b). Regions with punctuality issues 
(lower PP2 scores, marked in red) that are highlighted in the morning period are also 
present in the afternoon, but the extent and severity of these issues are more pronounced 
in the afternoon, with larger and darker areas indicating a greater number passenger and 
more OD pairs experiencing more significant delays. Notably, afternoon peak hours show 
more punctuality issues in northbound OD pairs, as seen in the lower half of Figure 20(b). 
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As for off-peak hours, we also calculate the EJT metric, for both morning and afternoon 
peak hours, from the distributions of actual travel time percentiles compared to the 
scheduled travel time for each OD pair. Figure 21(a) and (b) presents the spatial 
distribution of EJT scores during morning and afternoon peak hours, respectively. Again, 
a common colour bar is used for direct comparison between the two periods. 

 
Figure 21. Spatial the distribution of passenger-weighted EJT during (a) morning and (b) afternoon peak hours. 

Higher EJT scores, in Figure 21, highlight areas with punctuality issues, i.e., red areas 
which indicate significant deviations from scheduled travel times. However, while there 
are similarities in the regions pinpointed by both metrics, there are some differences, , see 
the red-encircled regions in Figure 21(b). For instance, EJT highlights certain 
southbound OD pairs with extreme punctuality issues during the afternoon peak hours, 
which were less prominent in the PP2 analysis in Figure 20. These differences are due to 
the way EJT captures the overall travel time deviation without relying on a fixed delay 
threshold, unlike PP2 which uses a 3-minute threshold that may exclude some (consistent) 
travel time deviations. 
To explore the relationship between PP2 and EJT, a scatter plot analysis is performed for 
both morning and afternoon peak hours, as shown in Figure 22 (a) and (b). As for off-
peak hours, scatter plots indicate a negative correlation between the scores in both 
periods. The correlation is stronger and less scattered for the afternoon period and for OD 
pairs with better punctuality. 

 

(a)                                                              (b) 

Figure 22. Scatter plotting showing the correlation between EJT and PP2 for (a) morning and (b) afternoon peak hours. 
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In addition to PP2 and EJT, we also analyse the EW or rather the expected (passenger-
weighted) waiting time (noted 𝐸𝐸𝑊𝑊𝑝𝑝 earlier). It is particularly useful during peak periods 
when high passenger volumes and short-headway services make waiting time a more 
critical component of the overall journey experience. Lower EW scores indicate better 
passenger punctuality and more regular services, making it a valuable metric for 
understanding the impact of service irregularities on passengers. 
Figure 23 shows the resulting EW scores for different departure stations along the studied 
line during morning and afternoon peak hours. The EW scores range between 8 to 18 
minutes for both periods, with stations close to terminal stations having generally higher 
EW due to lower service frequency compared to more central stations. Some central 
stations, despite having more frequent services, also show slightly higher EW scores due 
to higher passenger ridership, reflecting the impact of both service supply and passenger 
demand on waiting times. Thus, the EW metric can highlight the interplay between 
passenger ridership, service frequency, and regularity during peak hours, which can 
complement the other metrics. 

 
Figure 23. EW scores for different departure stations in the studied line during peak hours. 

Table 8 summarizes the aggregated score of the studied punctuality metrics for the 
morning and afternoon peak hours. The aggregated results show that punctuality scores 
are generally better during the morning peak compared to the afternoon, except for EW, 
indicating a slightly higher passenger waiting time in the afternoon peak hours. Note that 
EW is theoretically a more suitable metric to use during peak hours. 

Table 8. Summary of the calculated punctuality metrics during peak hours. 
Metric (unit) Morning Afternoon 

OTP at 3-min delay threshold (in percent) 90.3% 88.0% 

PP2 at 3-min delay threshold (in percent) 88.4% 84.9% 

EJT (in seconds per passenger) 27 31 

EW (in minutes) 13 12.7 
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The comparison of these metrics highlights the importance of using a various measure to 
gain a more comprehensive understanding of punctuality during peak hours. While 
metrics, e.g., OTP and PP2, provide a general overview of punctuality based on delay 
thresholds, EJT can offer more insights of travel time deviations, and EW can 
complement it with passenger waiting times analysis due to service irregularities. The 
differences observed between these metrics underscore the need for a nuanced approach 
when assessing punctuality, as different metrics capture different aspects of the passenger 
experience, often leading to varying conclusions. It is therefore essential to continue 
exploring and comparing various existing metrics in practice across different scenarios to 
better understand how they can be combined for a comprehensive assessment of 
passenger punctuality in PT systems. 
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5. Concluding remarks 

The study explores different passenger-centric punctuality metrics to address the 
limitations of traditional vehicle-centric metrics that are commonly used in PT systems. 
Both quantitative and qualitative insights are discussed with representatives from 
different PT actors, namely Skånetrafiken, the regional public transport authority (PTA) 
in the Scania region, and Transportstyrelsen, the national transport regulator in Sweden.  
In this chapter, the importance of the reviewed metrics is highlighted along with practical 
recommendations for improving PT service monitoring and management. It also 
summarises some of the challenges and potentials of these metrics as well as directions 
for future works. 

5.1. Discussions and insights 

The choice of delay thresholds plays a crucial role when using OTP and its variants, 
including passenger-centric ones, e.g., passenger-weighted OTP (PP2). PT stakeholders, 
including operators and PTAs, need to be aware of how sensitive the punctuality scores 
are to this parameter. A sensitivity analysis, as shown in the quantitative assessment (see 
4.2.1), is one possible method to understand the influence of different thresholds on the 
punctuality results. 
As expected, the quantitative analysis reveals lower punctuality during morning and 
afternoon peak hours, both from a vehicle and passenger perspective. PTAs and other PT 
stakeholders should complement overall punctuality assessments with period-specific 
analyses, e.g., peak versus off-peak. The qualitative review also suggests that numerous 
metrics are more suitable for these specific periods. Additionally, the case study illustrates 
a correlation between passenger ridership and vehicle delays, highlighting the need for 
punctuality analyses from a passenger perspective, especially when doing cross-
comparisons between periods and locations with large differences in ridership. 
Passenger-centric metrics, as demonstrated in the case study, provide a more in-depth 
understanding of punctuality compared to vehicle-centric metrics. However, these 
metrics require good-quality demand data. Additionally, there are some challenges in 
collecting such (good quality) data, such as the PT vehicle fleet not being fully equipped 
with APC, inconsistent ticket validation by passengers, missing alighting data, and 
varying data quality across transport modes (e.g., buses typically have better demand data 
than trains). Based on the available data, some metrics require only aggregate demand 
estimates (e.g., passenger-weighted OTP), while others need more detailed data. 
The case study further illustrates that traditional vehicle-centric metrics tend to 
overestimate passenger punctuality, especially during peak hours. As more automatic 
data collection systems are implemented and demand data quality improves, PTAs and 



52   K2 Working Paper 2024:9 

PT operators could consider updating their overarching punctuality goals to reflect 
passenger-centric metrics, as these are more closely linked to passenger satisfaction. This 
shift could also inform new requirements in tendering contracts with PT operators and be 
useful in monitoring existing contracts, which are currently mainly evaluated using 
vehicle-centric metrics. With improved data collection systems, there is also potential for 
real-time monitoring and operational management using passenger-centric metrics to 
improve the resilience of PT systems and their service reliability during disruptions. 

5.2. Summary of challenges and potentials 

While the reviewed metrics offer valuable insights into passenger punctuality, several 
challenges have been identified. One major challenge is data availability and quality, 
particularly for metrics which depend on more detailed AFC data. Thus, ensuring high-
quality and consistent data collection across PT modes and systems is important for 
effective implementation. Integration with existing automatic collection systems can also 
pose difficulties as well as the deployment and maintenance of such systems. 
Another related challenge is the complexity of certain metrics, which may require more 
data processing, e.g., estimating alightings, and can therefore be resource-intensive when 
applied to large networks or used for real-time monitoring. Furthermore, certain metrics 
can be difficult to interpret and communicate effectively to various PT stakeholders. 
Despite these challenges, there are several potentials that can be highlighted: 

• With enhanced data collection systems, more accurate insights can be gained into 
where and when passenger delays occur. This allows for targeted improvements, 
such as adjusting schedules or optimizing routes during peak demand periods. 

• When combined with real-time data, passenger-centric metrics can improve 
operational management based on real-time accurate monitoring of passenger 
punctuality. 

• Passenger-centric metrics allow PT operators to better align their service 
performance targets with passenger needs. This is also useful for PTAs when 
revising tendering contracts with operators, ensuring that passenger punctuality 
and satisfaction become a more central focus of performance evaluations. 

• Passenger-centric metrics can potentially help identify underserved areas and 
periods where passengers face disproportionate delays. This can lead to more 
equitable service improvements. 

• As the availability of high-quality data improves, the same metrics can be applied 
across different PT modes, allowing for a scalable and more integrated evaluation 
of service reliability across multiple modes. 

5.3. Directions for future works 

This study focused primarily on punctuality (and regularity to a lesser extent) as key 
aspects of PT reliability. Future research can build upon this by exploring broader 
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dimensions of service reliability and by applying these passenger-centric metrics across 
different PT modes. What follows is a number of directions for ture work: 

• Given that the case study was focused on commuter rail, future research could 
study bus services, which have their own unique dynamics and challenges. Buses 
often have better data quality, making them an ideal subject for further 
quantitative experimentation by investigating bus-specific metrics. Furthermore, 
such studies could extend passenger-centric metrics to capture multimodal 
journeys, integrating data across multiple lines and modes. By including the 
effects of transfers and overall journey times, this would provide a better 
understanding of the passenger experience, compared to focusing on single modes 
or routes. 

• An important direction for future research is to investigate the updating of 
overarching punctuality goals and performance regimes in procurement contracts. 
As the understanding of passenger-centric punctuality improves, there is an 
opportunity to revise how these performance measures are defined by the PTAs 
and enforced in tendering contracts with PT operators. Ensuring that punctuality 
metrics align with passenger needs, rather than vehicle-centric goals, can 
incentivize operators to focus on delivering a higher quality of service and 
increase passenger satisfaction. 

• Future work could also explore broader resilience aspects of PT systems, 
particularly how they respond to disruptions and delays. Sensitivity analyses can 
help explore how demand variations and different types of delays (e.g., minor 
versus severe) impact passenger punctuality. 

• Additional research could focus on refining delay classifications (type, length and 
frequency) and examining their non-linear impacts on passenger satisfaction. 
Understanding which types of delays (e.g., short vs. long, expected vs. 
unexpected) affect passengers the most can inform more targeted service 
interventions. 

• Traffic information systems and how they influence passenger punctuality should 
also be studied further. Investigating the role of real-time information in 
enhancing passenger punctuality and satisfaction can offer insights into how such 
systems can be better integrated into PT operations. 
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