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Abstract 

The thesis presented here delves into why dwell time delays for commuter trains 
occur, with a specific focus on the impact of boarding and alighting passengers. The 
overarching aim is to develop knowledge of how time delays arise to identify and 
describe potential ways in which dwell time delays can be reduced. In addition to 
this, a secondary aim is to identify how dwell times can be studied on a network-
wide level. Six research papers are included in this thesis, which all contribute to 
the aforementioned aims. The first paper presents a literature review on the 
influence of passengers on dwell times. The five subsequent papers present different 
data analyses on the impact of passengers on dwell times and make use of several 
years worth of automatic passenger count data collected on board commuter trains 
in Stockholm and the region of Skåne in Southern Sweden. 

The findings from these studies indicate that although the volume of passengers is 
often stated as the main cause for dwell time delays, this is not necessarily the case. 
The results, instead, suggest that the volume of passengers acts as an accelerator for 
the negative impact of other aspects of the dwelling process such as the behaviour 
of passengers. With regards to studying dwell time delays it is important to make 
use of robust measures and to present dwell time delays in terms of frequency and 
size rather than just an average value. In addition to this, the value of having data 
on a level of seconds rather than minutes is highlighted. The latter is important since 
a majority of dwell time delays are smaller than one minute.  

Several avenues to reduce the risk of dwell time delays are proposed, based on the 
findings from the included studies. The first avenue to be explored is that of 
adopting a more dynamic approach to dwell time scheduling. In practice, this means 
that, in contrast to what is common practice in Sweden, different dwell times should 
be used during peak and off-peak hours and between different stations. In addition 
to this, it is important to account for the behaviour of passengers during the boarding 
and alighting process. This can be done by making use of platform management 
measures. The third avenue that is identified states that dwell time scheduling should 
take on a more network-wide approach rather than treating stations as a single entity. 
This is important since there are interdependencies between stations that influence 
the behaviour of passengers, such as the way passengers spread out. Working on 
these points will help to reduce the risk of dwell time delays. Although this thesis 
has an emphasis on the Swedish context, given the origin of the data, the above-
mentioned avenues are likely to be applicable in different geographical settings as 
well. 

 



Popular science summary 

Recent years have seen increased efforts to improve the punctuality of trains. One 
of the reasons for this is that punctuality is a key performance indicator concerning 
passenger satisfaction and punctuality can thus be seen as important to both retain 
current passengers as well as to attract new users. Attracting new passengers can 
help to induce a shift away from private motorized transport, reducing greenhouse 
gas emissions from the transport sector. In addition to this, punctual railways can 
help to increase the level of accessibility for those who do not have access to another 
mode of transport. Having longer travel times due to delays can result in reduced 
access to the job market and society. Making trains run on time thus not only makes 
it green but also a fair mode of transport. However, despite the efforts made to 
improve the punctuality of railways it is still below the desired target levels, both in 
Sweden and in other parts of Europe, and further improvements have to be made.  

Punctuality is closely related to delays, indeed when a train is not delayed it will 
most likely be punctual. Trains can suffer from a delay for various reasons and one 
type of delays are the so-called dwell time delays. Dwell time delays arise when a 
train is stationary at a station for longer than scheduled. It is these dwell time delays 
that are the focus of the work presented here. Dwell time delays are relatively small, 
often in the range of several seconds to a minute, but can accumulate larger delays 
over an entire journey and cause other trains to have to wait outside of the station 
when the platform is occupied for too long. The impact of dwell time delays can be 
even larger from the perspective of passengers. This is especially the case when 
there is a need to make use of several modes of public transport during a single trip. 
In such cases, a small delay can snowball when a connection is missed. 

The thesis presented here focuses on why dwell time delays occur, the impact of 
passengers on dwell times, how dwell time delays can be measured, and finally how 
the risk of dwell time delays can be reduced. Several years of passenger counts 
collected on board trains in Stockholm and the region of Skåne in Southern Sweden 
were used to study and analyse the impact of passengers on dwell times. The results 
of these analyses indicate that, although the volume of passengers is often seen as 
the main cause of dwell time delays, this is not necessarily the case. Instead, the 
findings from the studies show that the volume of passengers acts as an accelerator 
for other aspects such as an uneven spread of passengers or passengers queuing up 
in front of doors. A high volume of passengers on its own is not sufficient to increase 
the risk of dwell time delays, but this will happen when there is a high volume of 
boarding passengers that are unevenly spread between the doors. 

 



  
  

To better understand dwell time delays it is important to better measure these delays. 
Currently, the punctuality of trains is measured at the final station in Sweden and 
other places around Europe, meaning that dwell times are not actively measured. 
Instead, dwell times should be measured based on their size and frequency, allowing 
to not only understand how large dwell time delays are but also how often they 
occur. A more novel way to measure dwell time delays was also explored in this 
thesis, using the relative dwell time performance of stations and railway services. 
By combining both how often a train is delayed and how often a dwell time delay 
occurs at a given station, it was possible to identify that there is no such thing as a 
station where all trains are delayed but that it is often a small number of trains that 
have a delay. 

The findings presented in this thesis can assist planners to more accurately schedule 
dwell times, by having better insights into both the size and frequency of dwell time 
delays along with a better understanding of where and when dwell times are likely 
to occur. Although scheduling dwell times more accurately will be beneficial, the 
findings presented in this thesis indicate that these benefits will be watered down 
when the behaviour of passengers is not addressed. In addition to scheduling dwell 
times better, efforts should thus also be made to steer passenger behaviour such as 
how boarding passengers spread out. This can be done by making use of platform 
management measures. Furthermore, it is important to introduce a network-wide 
approach to dwell time scheduling, and not see stations as a single entity. Dwell 
time delays at one station can be caused by what happens at another station and it is 
important to not ignore these kinds of relations. 

Working towards having fewer to no dwell time delays will help to increase the 
punctuality of both trains and passengers, making railways a more viable and 
enjoyable way to travel, and help to start a shift to rail. Although the points 
mentioned here are the result of studies within a Swedish context they are likely to 
be valid in a wider context as well. 
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1 Introduction 

Recent years have seen an increased pressure to change our daily habits in order to 
reduce greenhouse gas emissions and slow down climate change. One of these daily 
habits that requires a change is the way in which we travel. The transport sector 
accounted for around 26% of the total greenhouse gas emissions in Europe in 2019 
(European Environment Agency, 2022), of which a large part was a result of car 

travelling on the highway. In contrast to this, trains have an average emission of 
(Jones et al., 2017). The 

lower emissions from railways compared to private motorized modes of transport 
make that a modal shift towards public transport is one of the ways to reduce 
greenhouse gas emissions (Blayac & Stéphan, 2021). Shifting from private 
motorized transport to the use of railways can potentially lead to a reduction of 0.105 

(Weber et al., 2022). 

Although a shift towards railways is good for the environment, it is annoying if 
taking the train means you do not always know if you will arrive on time or not, a 
metric captured and formalized in the term punctuality. The Cambridge Dictionary 
defines punctual as “the fact of arriving, doing something, or happening at the 
expected or correct time and not late” (Cambridge Dictionary, n.d.). Taking this 
definition and the common experience with railway travel it is easy to see why work 
towards improving the punctuality of trains is needed because “at the expected or 
correct time” and “taking the train” seem to fit together like a bowl of soup and a 
fork on some days. 

The on-time performance, or punctuality, of trains is one of the major determinants 
of the satisfaction of passengers (Brons & Rietveld, 2008; van Loon et al., 2011), 
with small delays already harming the perception of railways (Volovski et al., 2021). 
A study by van Lierop et al. (2018) found that the benefit of punctual services can 
even outweigh improvements in the on-board experience for passengers. The 
importance of travel time punctuality and reliability is also reflected in the value of 
travel time associated with delays. Parbo et al. (2016), for example, state that 
passengers place more importance on travel time certainty than on potential travel 
time reductions. One reason for the importance of punctuality over on-board 
comfort can be the type of travellers, commuters typically emphasise punctuality 
more since they travel during peak hours and their arrival or departure times are less 
flexible compared to leisure trips (Parbo et al., 2016). 
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Punctuality is closely related to the concept of delays, indeed when no delay is 
incurred one is expected to be punctual and vice versa. Train delays can be classified 
into two broad categories, one being run time delays which occur when a train is 
moving between two stations, and the other being dwell time delays which arise 
when a train is stationary at a station. The thesis presented here focuses on the latter 
of these and more specifically on dwell time delays for commuter trains.  

Although dwell times make up a relatively small portion of the total travel time for 
commuter trains they are relevant to study given their strong relationship with the 
overall punctuality of trains, and thus also with passenger satisfaction. Despite the 
acknowledgement that dwell times are important, the underlying causes for dwell 
time delays are however not well understood (Harris et al., 2013). The overarching 
aim of this thesis is, therefore, to develop knowledge of how dwell time delays arise 
in relation to operational and passenger variables and describe potential ways in 
which dwell time delays can be reduced. The work presented here provides 
empirical evidence of different ways in which passengers and operational conditions 
influence dwell times. In addition to this overarching aim, a secondary aim is to 
identify how dwell times can be studied on a network-wide level. 

1.1 Benefits of improved punctuality 
A question that is often asked is why there is a need to strive for punctual trains, and 
what benefits are actually gained when a train arrives on time. Although the 
punctuality of trains is closely related to the operations of railways and 
improvements in the punctuality of trains will have benefits for railway operators, 
the potential benefits of improved punctuality will also transcend the world of 
railways into the wider society. 

Given the importance of punctuality from the point of view of passenger 
satisfaction, it is feasible to expect that improving punctuality and reliability will 
result in increased ridership, and higher levels of ridership retention (Monsuur et al., 
2021). The quality of public transport also has a direct effect on car ownership 
(Holmgren, 2020) and increasing punctuality can induce a modal shift away from 
private motorized transport in favour of railway travel, which helps to reduce 
greenhouse gas emissions. Increasing ridership has several societal benefits. First, 
it allows to further leverage the environmental benefits of railways as a mode of 
transport. Although seen as a green mode of transport, this benefit only really comes 
into effect when the passenger volumes are large enough (Givoni et al., 2009). In 
addition to making the air safer to breathe, train travel is also safer as a mode of 
transport compared to travelling by car by a factor of 50 (European Commission, 
2021). 
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Increased ridership also affects the cost-effectiveness and profitability of the railway 
system. Operating a railway system more cost-effective will lead to less need for 
external funding, reducing the social costs of railway transport (Li & Preston, 2015). 
Furthermore, spreading the costs over a larger volume of passengers could allow for 
a reduction in ticket prices without a loss in revenue. This is important since the 
costs of public transport have been identified as a barrier to use by Mackett and 
Thoreau (2015). Although somewhat speculative, the examples above suggest that 
increasing ridership retention and attracting new passengers by providing punctual 
train services could potentially lead to a positive feedback loop in which the effect 
of increased ridership will lead to a further increase as a result of reduced ticket 
prices. 

There are also more indirect societal benefits when the punctuality of railways 
improves. Accessibility to different opportunities, such as access to the job market, 
will be improved as the risk of long travel times due to delays decreases. This is 
especially relevant for those who do not have access to a private vehicle and are 
dependent on other modes of transport (Kawabata, 2003). This is especially the case 
for women, who make more use of public transport services for their mobility needs 
compared to men (Ng & Acker, 2018), and extended travel times have been shown 
to increase their distance to the labour market (Black et al., 2012). The latter 
becomes even more important when someone makes use of multiple modes of 
(public) transport since small delays can lead to larger delays when connections are 
missed (Rietveld et al., 2001; Vromans, 2005). A small delay of 30 seconds can lead 
to sitting in a bus station for 30 minutes due to a missed bus connection, for example. 
Ensuring that railways are a viable travel option can thus greatly benefit these 
groups of society and in turn make railways not only a green but also an equal form 
of transport. 

1.2 The concept of punctuality in railways 
As mentioned at the beginning of this introduction, the term punctual commonly 
refers to the act of being on time. The definition of punctuality used within the 
context of railways is, somewhat, different to this. Within the railway context, 
punctuality is a measure of adherence to the timetable based on a predefined level 
of acceptable deviation from the schedule (Olsson & Haugland, 2004). Similar to 
the term punctual, punctuality is a measure which says something about the 
difference between the scheduled time and the actual time. In this case, this is the 
arrival time of a train. Different to the term punctual is the use of an acceptable 
threshold within which a train is still considered to be punctual. This means that 
even if a train does not arrive exactly on time, it can still be punctual according to 
the definition used in the context of railways. 



16 
 

In broad terms, it is possible to measure punctuality based on the following three 
steps: 

Step 1: define a threshold for a tolerable deviation from the agreed time.  

Step 2: measure whether a train arrived at the specified time and within the tolerable 
deviation or not.  

Step 3: divide the times that the train arrived at the specified time and within the 
threshold by the total number of train trips made. 

An important aspect when measuring the punctuality of trains is to define the 
“acceptable deviation from the scheduled time” and to determine a suitable 
measuring point. In Sweden, this threshold is set at 5 minutes and 59 seconds and is 
measured at the final station of a train trip (Joborn & Ranjbar, 2022). In practice, 
this means that a train is only considered to be delayed when it arrives at the final 
station with a delay of 6 minutes or more. 

The example above is valid for the Swedish railway network, within which the work 
done in this thesis took place. Different approaches to measuring punctuality are 
used across Europe. Both the threshold for what is considered to be a delayed train 
as well the measuring point are different between countries. Punctuality in Norway 
is commonly measured at the final stations and at some important stations such as 
Oslo. In addition to this, a distinction is made between local and regional trains and 
other types of services in Norway, where the former has a delay threshold of 3 
minutes and the latter has a delay threshold of 5 minutes (Olsson & Haugland, 
2004). Grechi and Maggi (2018) summarized how punctuality is measured 
differently for regional and long-distance trains in other countries across Europe, 
highlighting that the most common threshold for a delay is set at trains being more 
than 5 minutes late, slightly shorter than in Sweden. Some countries, such as 
Denmark, The Netherlands, and Spain use a much stricter threshold of around 3 
minutes. Switzerland, known for its punctual trains, also utilizes a 3 minute delay 
threshold. Different to most other countries, the Swiss also measure the percentage 
of connections made. In this case, a connection is considered to have been made if 
the fixed interchange time between two trains at the transfer station is still provided 
to the passengers (SBB CFF FFS, n.d.). In contrast to other countries, the Swiss thus 
also provide a punctuality statistic from the point of view of passengers.  

The examples above do not serve as a definitive list of punctuality measurements 
across all railway networks. Instead, these examples illustrate that although 
punctuality is often referred to as a measurement with a single meaning the way it 
is measured can be different between countries. As shown this difference can be 
found both in terms of the acceptable deviation, the type of trains considered, and 
the location where the measurement takes place. 
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It is worth noting that although terms such as punctuality, delays, and reliability are 
sometimes mentioned within the same context they indicate different things. For 
example, a train that is never punctual can still be reliable since one can rely on it 
not being punctual. Concerning the difference between punctuality and delays this 
difference is more technical. Delays are measured in time and punctuality is 
measured in percentages (Økland & Olsson, 2020). It is this percentage that is often 
formalized as a goal for the punctuality of railway services and acknowledged as a 
key performance indicator for railways (Olsson & Haugland, 2004). Punctuality is 
also often discussed in the media when talking about the service performance of 
railways (Joborn & Ranjbar, 2022) and included in contracts between infrastructure 
managers and operators (Noland & Polak, 2002). 

In the case of Swedish railways, the goal is to have a punctuality of 95% 
(Järnvägsbranschens samverkansforum, 2021), meaning that 5% of the train trips 
are allowed to have a deviation from the scheduled time of more than 5 minutes and 
59 seconds at the final station. This goal is, however, often not met in practice, and 
the punctuality of Swedish railways has been hovering around 90% between 2019 
and 2021 in Sweden (Järnvägsbranschens samverkansforum, 2021).  

Punctuality, or the lack thereof, is not just a Swedish issue. A 2021 report from the 
European Commission reports a steady decline in the punctuality of railways within 
the European Union. Here a maximum delay of 5 minutes is used to measure the 
punctuality of railways. The findings show that the overall punctuality of trains 
within the European Union dropped to 90% in 2018, compared to 93% in 2012 
(European Commission, 2021). So even though the work that is presented in this 
thesis is performed within a Swedish context, the outcomes are also of interest to 
other (European) countries. 

1.3 The concept of dwell times 
The thesis presented here focuses on dwell times and it is, therefore, worth to dive 
deeper into the concept of dwell times. Within the context of commuter trains, dwell 
times refer to the time a train is stationary at a station allowing for passengers to 
board and alight. The actual dwell time is commonly measured as the difference 
between the arrival and departure time of a train (Li et al., 2014). Dwell times are, 
sometimes, referred to in terms of the minimum dwell time. The minimum dwell 
time corresponds with the minimum time needed to complete the boarding and 
alighting process and to depart from a station (Goverde, 2005; Pedersen et al., 2018). 
This minimum dwell time does not include any additional time such as a dwell time 
buffer or time to allow for fluctuations in the dwelling process, passenger flows and 
arrival delays (Goverde, 2005) and is thus not always a realistic dwell time. 
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One reason why the minimum dwell time is often not achievable in practice is due 
to the stochastic nature of the dwelling process. Although dwell time is commonly 
referred to as a single process, it consists of several different sub-processes 
(Buchmueller et al., 2008; Goverde, 2005; Heinz, 2003) with both static and 
dynamic time elements (Seriani et al., 2019b). A schematic overview of the dwell 
time process is shown in Figure 1, with static elements shown in white and the 
dynamic element of dwell time shown in orange. 

 

 
Figure 1: Schematic overview of the dwell time process. The orange colour indicates the 
dynamic elements and white boxes indicate which processes make up the static time 
elements of the total dwelling process. 

The static time elements are governed by the technical aspects of the railway system 
and can be considered to be system constants (Heinz, 2003). The time needed to 
complete these static time elements can differ between train types. For example, the 
time it takes for the door to open depends on whether or not passengers need to 
request for the door to be opened, and the speed at which doors can open. Some 
trains also have sliding extensions to facilitate a level entry. When such a sliding 
extension is present this will extend the time needed to open the door since this 
process cannot begin before a train is stationary and must be completed before a 
door opens (Buchmueller et al., 2008). The time needed to close the doors is defined 
by the same technical features. The dispatching time refers to the time needed for 
the departure procedure after all the doors are closed during which the train driver 
prepares for departure or waits for permission to depart (Goverde, 2005). 

Where the static time elements of dwell time are related to the technical features of 
the system, the dynamic time element of dwell times is governed by the boarding 
and alighting time (Goverde, 2005). The boarding and alighting time is defined by 
the time it takes for the boarding and alighting to be completed at the “slowest” door 
(Buchmueller et al., 2008), which is also known as the critical door. Several 
different reasons exist as to why the time needed for boarding and alighting is not a 
constant, which will be described in a later section of this thesis. 
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1.4 Terminology for dwell times used in this thesis 
The terms delay, deviation, and punctual are used throughout this thesis and it is 
worth pointing towards the meaning of these terms within the context of the work 
presented here. The definition of the Cambridge Dictionary for punctual, which 
defines punctual as “the fact of arriving, doing something, or happening at the 
expected or correct time and not late “, is used when describing whether a dwell 
time is punctual or not meaning that a punctual dwell time is defined as “the fact of 
the length of the actual dwell time corresponding with that of the scheduled dwell 
time”. Here the actual dwell time is the time measured by systems on board a train 
and the scheduled dwell time is defined in the timetable. 

A further distinction is made between dwell time delays and dwell time deviations. 
In this context, the term dwell time delays exclusively refers to a situation where a 
train is stationary at a station for longer than scheduled, and departs after its 
scheduled departure time. The term dwell time deviation, on the other hand, refers 
to dwell processes that are either longer or shorter than scheduled and thus includes 
both dwell time delays as well as the recovery of delays. 

A graphical representation of different “types” of dwell time is shown in Figure 2. 
As stated before, dwell times are considered punctual when the actual dwell time is 
equal to the scheduled dwell time. This happens when a train arrives and departs 
according to the scheduled time, but it can also happen when a train arrives with a 
delay and departs with a delay of an equal size. In that case, the actual dwelling 
process is still completed within the scheduled time despite the train departing with 
a delay, and there is thus no dwell time delay as such. 

 

 
Figure 2: Graphical representation of dwell time deviations, with actual dwell times indicated.  
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Dwell time deviations can either be classified as delay recovery, as extended dwell 
time, or as a dwell time delay. Delay recovery takes place when a train arrives with 
a delay and departs without a delay. In this case, the dwell time deviation is negative, 
indicating that the dwelling process took less time than scheduled and the train was 
able to recover some of its delayed time. 

Extended dwell times arise when a train arrives early and can be attributed to trains 
having to wait longer than scheduled since it is not allowed to depart ahead of the 
scheduled departure time (Coulaud et al., 2023; Kecman & Goverde, 2015). These 
extended delays are, however, not necessarily a delay as such when the train still 
departs at the scheduled time. This does not mean that such cases are positive since 
reoccurring instances of extended dwell times suggest that the available capacity 
cannot be optimally utilized. The third type of dwell time deviation is that of dwell 
time delays where both the dwelling process takes longer than scheduled and the 
train departs after the scheduled departure time.  

1.5 Dwell time delays and the impact on punctuality 
Even though dwell times make up a small part of the total travel time, commonly 
scheduled somewhere between thirty seconds and two minutes, the impact of dwell 
time delays on the punctuality and robustness of passenger train services is rather 
large (Harris, 2005; Palmqvist, 2019; van den Heuvel, 2016). Small dwell time 
delays can accumulate over a journey and result in a larger delay (Christoforou et 
al., 2020) meaning that a train with several small dwell time delays along its journey 
can end up with a sizeable delay at the final station. This delay can then exceed the 
tolerable deviation from the scheduled arrival time, even though no major events 
occurred to cause the train to be delayed. Furthermore, a train departing with a small 
delay of only a few seconds can go unnoticed but this small delay reduces the 
probability of an on-time arrival at the subsequent station (Vromans, 2005). In line 
with this, Luethi et al. (2005) found that dwell time delays were a major cause of 
delays in the Zurich area, stating that the buffer time between stations was not 
sufficient to absorb these delays. This notion is, somewhat, contrasted by Denti and 
Burroni (2023) who state that a departure delay can be recovered between stations 
but provide no analysis to which extent this occurs. 

It is worth pointing out that dwell time delays do not only affect the punctuality of 
the train incurring the delay but can also cause so-called knock-on delays. This can 
happen when a delayed train blocks access to a station or platform for a subsequent 
train (Yamamura et al., 2012). These knock-on delays are more likely to in dense 
networks and when services are run with short headways (Goverde, 2005). The 
dwell time can become a major constraint for operations in such cases, and may 
prevent the ease of delay recovery (Daamen et al., 2008; Harris et al., 2022). 



21 
 

Despite the potentially large impact of dwell times on punctuality, only a few studies 
quantified this relationship. Palmqvist and Kristoffersson (2022), studying how both 
run and dwell time delays influence punctuality, identified a strong link between the 
frequency of dwell time delays and the punctuality of railways. The authors state 
that reducing the frequency of dwell time delays is one way to achieve an 
improvement in the overall punctuality of railways. Describing the punctuality of 
trains in Norway, Olsson and Haugland (2004) state that increasing dwell times by 
a few minutes at stations along a single-track line can have large effects on overall 
punctuality. In the example, the authors describe, the punctuality of trains increased 
from 68.5% in 2002 to 85.7% during the same period in 2003 after dwell times were 
extended on some stations along a long-distance line. 

1.6 Structure of this thesis 
The remainder of the thesis is structured as follows. Section 2 provides an overview 
of the relevant background information. Here the concept of timetable planning is 
briefly explained and an explanation of how dwell time for commuter trains fits 
within the timetabling process is provided. This section also explains how dwell 
times can be modelled, and different causes for dwell time delays. This leads to an 
overview of the different ways in which passengers influence the duration of dwell 
times and how passenger flows are influenced by the design of rolling stock. The 
background section is rounded off with an overview of the different ways in which 
passenger count data can be collected on board of commuter trains. 

The background section is followed up by an overview of the scope of this thesis, 
including the problem outline, research gap, and research questions in Section 3. 
The list of papers included in the thesis is presented in Section 4, which also includes 
the declaration of contributions and the relationship between the papers themselves 
and between the papers and the different research questions presented in Section 3.  

The methods that were used in the included papers are described in Section 5, and 
the available data and data processing is presented in Section 6 and Section 7 
respectively. A summary of the included papers is provided in Section 8, with the 
answers to the research questions being presented in Section 9. The thesis is rounded 
off with a reflection on the data and methods used in Section 10, the contributions 
of the thesis to research and policy in Section 11, the limitations in Section 12, an 
overview of future research in Section 13, and the conclusion in Section 14. 
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2 Background 

The following chapter provides an overview of timetable planning and dwell time 
scheduling practices, as well as a short overview of dwell time models proposed in 
the past and why the results of such models are not always valid. This is followed 
by a description of different causes for dwell time delays, a description of how 
passengers influence dwell times, and a description of how passenger flow data can 
be collected within the context of commuter trains. 

2.1 Timetable planning 
Timetable planning refers to the task of scheduling when trains are where, matching 
the trains to the available infrastructure in both space and time (Goverde, 2005). 
This thesis will not delve too deep into the actual process of timetable planning itself 
since the focus is placed on dwell times. It is nevertheless worth briefly explaining 
the timetable planning process in Sweden, given the location where the research 
presented in this thesis took place. This description is based on an explanation 
provided by Palmqvist et al. (2018). In Sweden, it is the Transport Administration 
that acts as the infrastructure manager and supplies the capacity on the railway and 
it is the train operating companies that demand the use of these tracks.  

In general terms, the train operating companies send a request for capacity on the 
tracks to the Swedish Transport Administration where planners combine these 
requests and define a draft of the timetable. This draft timetable can still change 
depending on potential conflicts and disputes that arise, such as cases where two 
train operating companies want to make use of the same timeslot for a given section 
of track. Once these problematic cases are taken care of, a final operational timetable 
is produced. Going from a timetable design to a final timetable it thus an iterative 
process in which many things needs to be balanced. The final timetable is important 
as it forms the backbone for the successful operation of trains, becoming the means 
of communication between different actors and providing an indication to railway 
passengers regarding when and where trains will run (Goverde, 2005; Vromans, 
2005). 
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2.1.1 Run and dwell times 
Although somewhat of an oversimplification, it is possible to say that there are two 
main processes that make up the timetable and these are the run and dwell time of 
trains. Both these elements can be shown by making of use a graphical timetable, 
also known as a time-distance diagram (Goverde, 2005), of which an example is 
shown in Figure 3. The stations along the line are shown on the y-axis and the time 
is shown on the x-axis. The example shown here includes two directions, one being 
trains going from station A to station G, which is shown in red, and in the opposite 
direction which is shown in green. The vertical lines depict the run times, where the 
slope indicates the speed, and dwell times are depicted by the horizontal lines where 
the length of the line indicates the length of the dwell time. 

 
Figure 3: Simplified example of a graphical timetable. 

The run time dictates the time it takes for a train to travel between two subsequent 
stations. The technical minimum running time is defined based on the track and train 
characteristics which determine the maximum running speed and the spacing 
between two stations (Goverde, 2005). This minimum time is often not realistic, 
however, due to driver behaviour for example, and margins in the form of running 
time supplements are added to the minimum technical running time (Vromans, 
2005). These supplements are useful for the robustness of timetables since they 
allow for the absorption of small disturbances. 

To have a timetable that performs well it is important to include both precise and 
realistic running and dwell times (Buchmueller et al., 2008; Hansen, 2010). This is 
a balancing act between allowing enough time for each task set out within a 
timetable and planning a dense enough timetable to allow for a sufficient frequency 
of trains (Goverde, 2005). The latter is not only important from a passenger 
perspective but also from the perspective of network utilization, which can be 
measured as the number of realized train kilometres for each kilometre of rail in a 
network (Vromans, 2005). Being able to run trains at a higher frequency results in 
a better use of the available capacity for railway operators. 
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2.1.2 Stability and robustness 
Timetable planners often aim for a stable and robust timetable. Stability, in the 
context of a railway system, is a measure of both the time and effort required for the 
railway system to return to its normal state after a disturbance (Vromans, 2005). 
Two examples highlighting a different degree of stability are shown in Figure 4. A 
stable system, shown in Figure 4a, requires little time to return to its original state, 
whereas the system performance will be reduced for a longer period in an unstable 
system, as shown in Figure 4b.  

 
Figure 4: Example of different degrees of stability for railway systems, with a stable system 
in “a” and an unstable system shown in “b”. 

A similar notion can be made regarding robustness, where the effect of disturbances 
on the operation of a system will be limited when said system is robust, as shown in 
Figure 5a, and the system performance will deteriorate more when the timetable is 
less robust, as shown in Figure 5b. A robust railway system can also be defined as 
a system in which (small) external influences do not cause large delays and delays 
do not propagate through the network, and the opposite is true when a system is not 
robust (Vromans, 2005).  

 

 
Figure 5: Example of different degrees of robustness for railway systems, with a robust 
system in “a” and an unstable system shown in “b”. 
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Small fluctuations in the actual run time are inevitable, and margins or supplements 
are often added to the run time to ensure that this does not lead to delays. These 
margins provide additional run time that can be used to absorb small fluctuations. 
The size of these margins is formalized in national guidelines in Sweden (Palmqvist, 
2019), where run time supplements are set at a minimum of three percent of the 
running time across all cases, with headway between two trains set to be at least two 
to seven minutes. This headway is most commonly in the range of three to five 
minutes. Dwell times can include some buffer times as well (Goverde, 2005), which 
serve as a way to ensure robustness by scheduling slightly longer dwell times which 
allow a delayed train to recover some of its delay. 

2.1.3 Cyclicity and symmetry of timetables 
The next concept to describe is the cyclicity and symmetry of timetables. It is 
common to make use of cyclic timetables in many countries, including Sweden, in 
which all trains are operated with some fixed time intervals (Vromans, 2005). 
Cyclical timetables are usually also symmetrical. Symmetry in timetables indicates 
that the travel time from station A to station B and the travel time from station B 
back to station A is more or less the same. The transfer times between trains are kept 
the same in both directions as well when making use of a symmetrical timetable 
(Vromans, 2005).  

Cyclic and symmetric timetables have some benefits. Cyclic timetables are, for 
example, easier to remember for passengers since trains leave at the same time 
within each cycle. This means that a train that leaves at 8:10 will also leave at 9:10 
and leave again at 10:10. This repetitiveness increases the ease of use of trains as a 
travel mode (Robenek et al., 2016; Vromans, 2005) since increased clarity lowers 
travel resistance (Annema, 2009). A cyclic and symmetric timetable has benefits for 
the operator as well since it only requires the operator to plan for one cycle and this 
plan can be repeated throughout the remainder of the operating window (Vromans, 
2005). Symmetric timetables also allow to better schedule the transfer of passengers 
at large nodes, known as symmetric nodes, where all trains from all directions arrive 
at the same time and depart at the same time (Vromans, 2005). This again with the 
aim to increase the ease of use for passengers. 

However, as the late great Johan Cruijff famously said “Every advantage has its 
disadvantage” (Cruijf, n.d.), and this also holds true for cyclic timetables. As 
Vromans (2005) mentions, for example, cyclic timetables are not flexible and 
cannot be adapted to fluctuations in passenger demand or specific wishes for 
operators. This can result in trains being overloaded during peak hours and empty 
during off-peak hours, as well as dwell times being too short during peak hours or 
too long during off-peak hours. This problem can be overcome by using a cyclic 
timetable for different periods of the day, making it possible to schedule extra trains 
or time during peak hours and reducing this during off-peak hours (Goverde, 2005). 
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2.2 Dwell time scheduling 
An important part of the timetable is the scheduled dwell time (Buchmueller et al., 
2008). Dwell times often follow the same cyclicity as the timetable and this means 
that the same dwell time is scheduled for both peak and off-peak hours and between 
weekdays and weekends. Even though scheduling the same dwell time during both 
peak and off-peak hours is beneficial to ensure cyclicity and symmetry in the 
timetable, this static approach can lead to unrealistic timetables and can cause the 
actual dwell times to exceed the scheduled dwell times on a regular basis (Goverde 
et al., 2001; Nash et al., 2006; Palmqvist et al., 2020). For example, Pedersen et al. 
(2018) mention that dwell times in Sweden are scheduled based on the time needed 
during off-peak hours. As a result of this approach, there is little to no slack in the 
dwell time during the peak hours, where longer dwell times are more likely to occur, 
and the likelihood of delays during peak hours increases as a result of this. A similar 
notion concerning making use of the off-peak hours as the normative time to base 
the scheduled dwell time on is made by Olsson and Haugland (2004) regarding 
dwell times in Norway. When scheduling dwell times in a static manner one 
effectively inserts delays into the timetable by not accounting for fluctuations in the 
time needed to complete the dwelling process at different times of the day and by 
ignoring station-specific characteristics. 

Despite the importance of dwell times for the operation of railways, the actual dwell 
time scheduling process is sparsely described. It is often stated that dwell times are 
generally scheduled based on general assumptions and guidelines, rules of thumb, 
and experience from the past (Christoforou et al., 2020; Wiggenraad, 2001). This 
approach based on general rules and guidelines is also present in Sweden 
(Palmqvist, 2019), where 2 minutes is the standard and a dwell time of 1 minute is 
scheduled when the number of passengers is small (Palmqvist et al., 2018). Volovski 
et al. (2021) describe three methods to forecast dwell times proposed in the “Transit 
Capacity and Quality of Service Manual”, used in the US. Two of these methods 
estimate the upper bound of the scheduled dwell time for a given station based on 
the mean dwell time that was previously experienced at the station of interest or at 
similar stations. An operational margin of either 15 to 20 seconds or one to two 
standard deviations is subsequently added to this time. The third method described 
by the authors involves modelling dwell time as a function of passenger flow and 
operational variables. The authors do not mention if these methods are used in 
practice or not. 
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2.3 Modelling dwell times 
Scheduling dwell times is a non-trivial task since it includes several different factors 
related to passenger demand and different modelling approaches have been 
developed in the past in an attempt to assist planners when scheduling dwell times. 
This section provides a brief overview of some dwell time models that have been 
proposed. For a more in-depth overview, see the work done by Yang et al. (2019).  

In their review of dwell time models, Yang et al. (2019) classify the models as being 
either statistical models or simulation-based models. The examples provided on the 
latter mostly focus on the simulation of passenger movement, either on a platform 
(Ahn et al., 2016) or inside a train (Baee et al., 2012). Such models do not provide 
insights into the necessary dwell time and are, therefore, not discussed in the 
following overview which is limited to the use of statistical models to predict the 
necessary dwell times.  

The most notable example of a statistical dwell time model, often referred to in 
dwell time literature, is the model proposed by Weston (1989) and is shown in 
Equation 1. 

 =  + 1.4 1 + ( ) . + . + 0.027  (1) 

This model, designed for the London underground, can be used to calculate dwell 
time here referred to as service time (SS) based on the volume of boarding (B) and 
alighting (A) passengers and the ratio between the busiest and average door (F). The 
model also takes the number of through passengers (T), referring to the number of 
passengers that stay on the train during the dwelling process, into account. The 
values used in this model are aggregated on a train level. The model also requires 
inputs on the number of seats (S) and doors on a train (D), as well as a constant for 
the technical time needed to open and close the doors of a train ( ) which is set at 
15 seconds in the case of the London Underground. Although developed in the late 
eighties, the model has been tested more recently by Harris and Anderson (2007) 
who found the model to have validity around the world, although some of the values 
in the model had to be varied slightly.  

Another model that is often referred to is the model proposed by Puong (2000) who 
developed a linear regression model which includes fewer variables compared to 
the model proposed by Weston (1989). The model proposed by Puong (2000) is 
shown in Equation 2: =  + +  (2) 

Where the dwell time (DT) is a function of the alighting passengers per door ( ), 
the boarding passengers per door ( ) and the number of through standees ( ).  
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Both of these models require detailed information on passenger flows which is not 
always available. Some models have recently been proposed that do not make use 
of the number of passengers to predict dwell times to overcome this issue. Examples 
of these so-called passenger-disregarded dwell time models can be found in the 
models proposed by Kecman and Goverde (2015) and Li et al. (2016). Passenger-
disregarded dwell time models do come with their own drawbacks, however. For 
example, Li et al. (2016) conclude that their models have potential but only during 
peak hours. Furthermore, both Kecman and Goverde (2015) and Li et al. (2016) 
state that including passenger-related variables will improve the accuracy of their 
models. 

Whilst the above-mentioned models can be helpful when scheduling dwell times, 
the lack of research into these models is identified in the Transit Capacity and 
Quality of Service Manual as a major impedance to the acceptance and 
implementation of dwell time models by transit agencies (Volovski et al., 2021). 
Caution is also needed when interpreting the outcome of dwell time models. 
Although not often clearly stated, the objective of most dwell time models is to 
determine the minimum dwell time. This means that the results of the models 
indicate the shortest possible dwell time given the technical time and the shortest 
possible boarding and alighting time as a function of the number of passengers. A 
major assumption made in these models is that the boarding and alighting rate stays 
more or less stable throughout the boarding and alighting process and is the same 
across all stops for a given train type. Both of these aspects have been found to not 
be true, however. A study in Switzerland found that dwell times can be different 
across platforms at a single station served by the same type of trains (Gysin, 2018). 
Furthermore, several studies have highlighted that boarding and alighting rates can 
differ throughout the boarding and alighting process (Fernández et al., 2015; 
Thoreau et al., 2016). Harris et al. (2014) state that the range of alighting rates is as 
large as 0.4 and 2.6 passengers per second and boarding rates are in the range of 
between 0.3 and 2.1 passengers per second. The fluctuations in the flow rate of 
passengers is one possible explanation as to why the minimum dwell time is often 
not the same as the time that is actually needed to complete the boarding and 
alighting process. This also means that scheduling based on the minimum dwell 
time is thus likely to result in dwell time delays. 
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2.4 Causes for dwell time delays 
The next section describes some of the possible reasons for dwell time delays. Based 
on the literature the following general reasons for dwell time delays can be identified 
(Harris et al., 2013; Pritchard et al., 2021): 

 

 Design of the infrastructure 

 Rolling stock design and operation 

 Station operation 

 Station design 

 Timetabling/train scheduling  Behaviour of passengers 

 Train control and operation  Behaviour of train staff 

 External factors (e.g. weather)  Passenger characteristics 

 

Not all of the above-mentioned reasons have received similar attention in the 
literature and the following descriptions are, therefore, limited to the behaviour of 
train staff, the state of the rolling stock, the behaviour of passengers, and the design 
of rolling stock with the latter two being described more in-depth in Section 2.5 and 
Section 2.6 respectively.  

With regard to the effect of train staff on the duration of dwell times, Harris et al. 
(2013) state two ways in which they can negatively influence the duration of dwell 
times, this being their ability to control the flow of passengers as well as staff 
members holding open train doors for late-arriving passengers. The authors state 
that if the train staff is not correctly positioned near entrance points, their ability to 
control the flow of passengers is reduced. Having reduced control of the flow of 
passengers can lead to late-arriving passengers being able to board the train just 
before it departs, which leads to extended dwell times since the doors cannot be 
closed on time. Better staff placement was found to reduce the average delay by four 
seconds. Another aspect highlighted is that of excessive service by staff members 
where staff members, with the best intention, hold the train to allow late-arriving 
passengers to still board. This behaviour was found to extend dwell times by up to 
twenty-five seconds.  

Harris (2015) also identified poor communication between train attendants and the 
driver to be a possible cause of dwell time delays, although the effect is only small, 
with it being around one or two seconds. Staff lateness was mentioned by Carey and 
Carville (2000) as a possible cause for a delay. In such a case a train cannot depart 
due to the crew not being present to operate the train. It is worth noting that staff 
lateness is not necessarily caused by staff members themselves, as this can also be 
the result of major disruptions resulting in cases where the train staff displaced, for 
example (Pritchard et al., 2021). 
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The state of the rolling stock has been identified as a potential reason for dwell times 
to be delayed. An example of this is a situation where one or more doors of the train 
are broken. A reduced number of doors can be used in such a situation and 
passengers have to reposition themselves upon finding out the door they planned to 
use is broken, putting extra pressure on the nearest doors to the broken one. Research 
on the impact of this is limited, however, a study by Dinmohammadi et al. (2016), 
using data from 38 trains in the UK, found a total delay time of 518 minutes as a 
result of broken doors. When the train doors do work, the way in which they are 
opened affects the technical time. Studies found that if unbeknownst to the 
passengers a door does not open automatically the dwell time can be extended as 
passengers have to actively open the train door (Douglas, 2012; Harris, 2015).  

2.5 Passengers and dwell time 
Dwell time is sometimes also referred to as passenger service time (Fernández et 
al., 2008; Heinz, 2003), a fitting name since dwell time is most of the times 
explicitly scheduled to allow for the exchange of passengers. Furthermore, the time 
it takes for the exchange of passengers can be seen as the main determinant for the 
length of dwell times. The effect of the boarding and alighting time on dwell times 
has been illustrated by Buchmueller et al. (2008) and an adapted version of their 
illustration is shown in Figure 6. 

Since trains cannot depart before all doors are locked, it is the door where the 
boarding and alighting process takes the longest time that defines the length of dwell 
times. This door is also known as the critical door. The critical door, Door 2, is 
indicated in orange in Figure 6. Comparing the length of the different sub-processes 
it can be seen that it is indeed the time it takes for the boarding and alighting to be 
completed that makes this door the critical door. In fact, door 3 opens at the same 
time as door 2 but can be closed earlier due to a shorter boarding and alighting time.  

 

 
Figure 6: Influence of boarding and alighting time on dwell times, the critical door is indicated 
in orange (Image adapted from Buchmueller et al. (2008)). 
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In their conceptual model of dwell times, Li et al. (2016) state that the boarding and 
alighting time is influenced by the number of passengers and their flow rates. 
Studying flow rates for both boarding and alighting passengers, Harris and 
Anderson (2007) found that these are typically in the range of 1 passenger per door 
per second but that these flow rates are situation-specific. A later study by Harris et 
al. (2014) found that the possible range of alighting rates is as large as 0.4 and 2.6 
passengers per second and boarding rates were found to fall between 0.3 and 2.1 
passengers per second. In addition to this, studies have found that passenger flow 
rates can differ between platforms of the same station served by the same trains 
(Gysin, 2018), as well as throughout the boarding and alighting process itself 
(Fernández et al., 2015; Thoreau et al., 2016).  

The interaction between boarding and alighting passengers is mentioned by Harris 
(2005) as one of the possible reasons for the differing passenger flow rates. This 
interaction takes place in an area sometimes referred to as the platform train 
interface area, or PTI for short (Holloway et al., 2015; Rodríguez et al., 2015; 
Seriani, Fujiyama, & de Ana Rodríguez, 2016). One way to depict the platform train 
interface area is as a semi-circular area located in front of the train doors, as shown 
in Figure 7.  

 

 
Figure 7: Schematic representation of the platform train interface area. 

2.5.1 What happens in the platform train interface? 
Two distinct processes that take place in the platform train interface area can be 
identified, this being the positioning of passengers in relation to the doors of a train 
and the formation of boarding and alighting lanes. Seriani and Fujiyama (2019) 
found that passengers waiting to board tend to stand more to the middle of the door 
when the number of boarding passengers is higher. This can, somewhat, be 
explained by findings suggesting that stress levels increase as a result of crowding 
when the number of boarders is large, resulting in passengers waiting to board to 
show less organized and civilized behaviour (Heinz, 2003; Hirsch & Thompson, 
2014).  
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These situations where boarding etiquette is not followed can lead to passengers
boarding a train before the alighting is finished (Seriani, Fujiyama, & Holloway, 
2016) resulting in an overlap between boarding alighting passenger flows. This 
interaction between both flows of passengers slows down the boarding and alighting 
process, extending the time needed to complete the boarding and alighting process. 

Another way in which boarding passengers obstruct the flow of alighting passengers 
is a result of passengers waiting to board leaning in. Passengers do this to try and 
spot a gap in the alighting flow of passengers (Harris et al., 2014; Heinz, 2003), this 
behaviour reduces the effective door width. This effect is illustrated in Figure 8, 
where the effective door width (shown in red) is much narrower compared to the 
designed door width (shown in green) as a result of how boarding passengers queue 
around the door. In practice, this means that even though the door is wide enough 
to allow for two lanes of alighting passengers, the effective door width only allows 
for a single lane of alighting passengers. Having more lanes means that more 
passengers can board or alight at the same time, speeding up the boarding and 
alighting process.

Figure 8: Designed (green) versus effective door width (red) when passengers crowd 
around the train door. Adapted from Harris et al. (2014)

2.5.2 The influence of the spread of boarding passengers
As stated by Heinz (2003), an easy mistake to make is to assume that passengers 
spread out evenly across all available doors. Although in theory this makes sense, 
in practice some doors are more used than others, a phenomenon known as 
concentrated boarding (Fox et al., 2017) and is illustrated in Figure 9. Concentrated 
boarding has an effect on the duration of dwell times since it leads to a minority of 
the available doors being utilized by a majority of the passengers, meaning that the 
boarding and alighting times at those doors will be extended. Studying the effect of 
concentrated boarding on dwell times Oliveira et al. (2019) found that dwell times 
can be extended by as much as 52 seconds when the degree of concentrated boarding 
is high. Looking back at Figure 6, it is possible to see that an uneven spread of 
boarding passengers will also effectively make the critical door more critical.
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Figure 9: Example of an even spread of boarding passengers (a) and concentrated boarding 
(b). 

2.5.3 Waiting positions of boarding passengers 
The unevenness of the spread of boarding passengers is directly influenced by the 
waiting position of passengers on the platform. A study by Dell’Asin and Hool 
(2018) states that passengers are likely to use the door closest to them to board and 
Heinz (2003) states that passengers will only change their boarding door when the 
walking distance is less than 10 meters. This means that the waiting position of 
passengers on a platform is a good indicator of the spread of passengers between 
the available doors while boarding. The actual waiting position of passengers is the 
result of an interaction between passengers and the physical layout of both the 
platform and the station environment. 

Observing the behaviour of passengers on station platforms, Nash et al. (2006) 
found that passengers tend to wait near objects on the platform and make use of the 
available roof coverage when waiting for a train to arrive. In addition, it has been 
found that passengers try to minimize their interaction with the flow of passengers 
on platforms, standing in such a way that they do not obstruct other passengers 
(Davidich et al., 2013). The physical layout of a platform in terms of the location of 
entrances and exits has also been shown to influence how passengers distribute 
themselves across platforms. Studies in several countries found that passengers are 
likely to wait near the entrance of a platform (Krstanoski, 2014; Lee et al., 2018; 
Peftitsi et al., 2020; van den Heuvel, 2016).  

In contrast to this, some studies found that passengers are likely to base their waiting 
position on the location of the exit at their destination (Fang et al., 2019; Jusuf et 
al., 2017; Kim et al., 2014; Zheng, 2018). Rüger (2018) hypothesizes that this has 
to do with reducing the risk of being stuck in a queue while exiting a station. 
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Some studies have indicated that it is not just the exit location but also the 
surrounding area of a station that has an influence on where passengers position 
themselves on a platform. For example, when a certain area can only be reached 
through a specific exit (Bosina et al., 2017) or when a connecting mode of transport 
is more easily reached through a specific exit (Van Den Heuvel & Hoogenraad, 
2014). A schematic example of this is shown in Figure 10, where the orange 
passenger wants to go to the city centre, and only one exit at the destination station 
leads to the city centre. In such a case, the orange passenger will stand in such a way 
that the door which is used for boarding lines up with this exit as much as possible. 

 
 

 
 

Figure 10: Example of waiting choices made by passengers using commuter trains. 

This behaviour was found to be time-dependent, and passenger circulation slows 
down when the departure time of a train is near (Bosina et al., 2015; Fang et al., 
2019; Fox et al., 2017; Wu et al., 2013). In such a case passengers opt to wait near 
the entrance location and board the nearest door. Rüger (2018) hypothesizes that 
this behaviour is due to passengers worrying about missing the train on the one hand, 
and passengers wanting to minimise their walking distance at their origin station on 
the other hand. 

2.5.4 On-board congestion 
The above-mentioned examples are related to what happens on the platform, but 
this is not the only way in which passengers can influence dwell times. As trains get 
more and more crowded the on-board congestion will start to play a role. As 
mentioned by Daamen et al. (2008) and Lee et al. (2018), increased vehicle 
occupancy or crowding will increase the difficulty for passengers to board and alight 
and extend the time needed for the boarding and alighting process. This has a strong 
link with on-board congestion. As described by Harris (2005), if a majority of 
passengers alight relatively large spaces are left inside the train which the boarding 
passengers can move into easily. If only a small number of passengers alight these 
spaces are not present making the boarding process more cumbersome.  
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Only a few studies have tried to uncover the impact of on-board congestion on 
boarding times. Studying the impact of passengers on dwell times in Tokyo, 
Palmqvist et al. (2020) found that increased on-board congestion resulted in longer 
boarding and alighting times. A recent study by Seriani et al. (2022) using a 
laboratory setting, also found that boarding and alighting times increase as the 
occupancy rate of a train carriage increases. Studying the impact of on-board density 
on the flow of passengers, Luangboriboon et al. (2020) found that there is a possible 
drop-off point for the passenger flow as the density in the vestibule increases, but 
do not find a definitive answer. Despite this, it is likely that the time needed for 
passengers to board and alight increases as on-board crowding increases. 

2.5.5 Late arriving passengers 
Dwell times can also be extended due to the behaviour of individuals near the end 
of the boarding procedure. An example of individual behaviour that has been 
identified in the literature is that of door-holding. Door-holding refers to the act of 
holding open a train door when the closing process has been initiated and is found 
to be most prevalent during rush hours (Hyun et al., 2016; Lindfeldt, 2017). Various 
reasons for door-holding have been identified in the literature.  

Passengers trying to “squeeze” into a full train will extend the time a door is open, 
for example (Coxon & Bono, 2010). Other examples from the literature are 
situations where the train door is kept open to allow late-arriving passengers to 
board. The latter can also be due to staff members who hold the doors open to allow 
passengers arriving just before the departure time to still board (Coxon & Bono, 
2010). The impact of door-holding is amplified when the closing sequence has to be 
reinitiated, which will extend dwell times even further (Harris et al., 2013). 
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2.6 Rolling stock design and passenger flows 
The flow of passengers is not only affected by what happens in the platform train 
interface area but also by the design of the trains, also known as rolling stock, and 
platforms. The following section provides a brief overview of some of the findings 
made regarding the effect of the design of rolling stock and platform on dwell times. 

2.6.1 Gaps and steps 
When passengers alight or board a train they have to traverse a step between the 
platform and train, this can be either horizontally, vertically, or both horizontally 
and vertically depending on the design of both the platform and rolling stock. 
Several studies have indicated that decreasing the vertical and horizontal gap is 
beneficial for boarding and alighting speeds (Atkins, 2004; Daamen et al., 2008; 
Seriani & Fujiyama, 2019a) which is possibly due to people not having to slow 
down to accommodate any gaps (Heinz, 2003). Depending on the design of a train, 
a vertical hurdle in the form of steps can be present at the door as well which can 
slow down boarding and alighting times (Heinz, 2003). A possible explanation for 
this is that these steps increase the perceived difficulty of boarding a train making 
passengers slow down (Holloway et al., 2015). The effect of both the vertical and 
horizontal gaps is somewhat related to the direction of passengers, where the impact 
is larger for boarding passengers than for alighting passengers, (Holloway et al., 
2015). This distinction is most clear when two steps are in place, in which case the 
boarding times are half a second longer per participant in comparison to the 
alighting times. 

2.6.2 Door width 
Although the step size has been indicated as an influential factor on the speed of 
boarding and alighting, Seriani and Fujiyama (2019a) found that the vertical gap is 
less relevant for the flow rate of passengers when the doors of the train are wide, 
allowing for a side-by-side flow. Similar remarks with regard to the benefit of wider 
doors are made by Wiggenraad (2001). It is unclear as to what the ideal train design 
should be with regard to the door width, however. Some results indicate a door width 
of 1.7 to 1.8 metres (Thoreau et al., 2016) to be the optimum, whereas other results 
indicate a smaller door width of 1.65 metres to be optimal (Fernández et al., 2015). 
This being said, Harris et al. (2014) found that the door width may not be as 
significant as commonly stated. This limited effect of the door width is potentially 
due to the positioning and behaviour of passengers, as previously described, which 
can be more influential on the boarding and alighting flows than the actual door 
width (Harris et al., 2014; Harris & Anderson, 2007).  
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2.6.3 On-board bottlenecks 
It is not just the outside door which forms a potential bottleneck for boarding 
passengers, there are also on-board bottlenecks which slow down the flow of 
boarding passengers. A study in Switzerland showed that interior bottlenecks 
become normative for the boarding rates when the number of boarding passengers 
at a single door exceeds 10 people (Tuna, 2008). This is especially the case when 
the capacity of the interior doors is lower than that of the exterior doors (Heinz, 
2003). Another on-board bottleneck is the width of the aisles between the seats. 
Somewhat counterintuitive, Sutton and Moncrieff (2015) found that narrower aisles 
resulted in lower boarding and alighting times due to fewer obstructions as people 
waited in the aisle and showed more cooperative behaviour. The authors nuance 
their findings by stating that only a limited number of observations were collected. 
Sutton and Moncrieff (2015) also studied the impact of perch seats in the vestibule 
and found that the presence of such seats negatively affected the boarding and 
alighting speeds. On-board crowding also forms a bottleneck, where the bunching 
of passengers in the train slows down the flow of passengers (Coxon et al., 2009). 
As with the gaps and steps, the effect of these bottlenecks depends on whether there 
the majority of passengers are boarding or alighting (Thoreau et al., 2016). 

2.7 Collecting passenger flow data 
In order to study the effect of passengers on dwell time it is important to have 
information about passenger flows. This is, however, not a straightforward task. 
Several methods exist to collect passenger flow information. In this context, 
passenger flows refer not only to the volume but also to other aspects such as waiting 
positions and the choice of carriages. The following overview is not an extensive 
list of all studies that made use of a specific method but rather serves as an overview 
to show different collection methods and some of their strengths and weaknesses. 

2.7.1 Manual counts and video observations 
A relatively straightforward way to collect passenger flow information is to make 
use of manual passenger counts where observers on the platform, or on board a train, 
count the number of passengers boarding and alighting. Although it is relatively 
simple to perform such manual counts it is labour-intensive and it is often not 
feasible to collect information on a door-by-door level or on a large selection of 
stops. In practice, this means that it is often only possible to collect a small sample 
of data.  
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An example of the use of manual counts is a study by Wiggenraad (2001) in which 
a total of 7 stations were observed, each for one day. The study made use of between 
6 and 21 observers across these stations and a total of 130 trains dwelling were 
observed. This example shows how manually collecting data is indeed labour-
intensive and the total sample size that can be collected is relatively small. 

Some studies made use of camera observations to somewhat overcome the need for 
a large number of observers. A benefit of this over the use of manual counts is that 
it is possible to re-watch the videos. This will, in theory, help to improve the 
accuracy of the measurements. Camera observations were used by Oliveira et al. 
(2019) to study where passengers stand on the platform prior to boarding a train. In 
a similar type of study, Davidich et al. (2013) made use of video observations to 
track passengers on a platform in order to study their waiting behaviour. Video 
observations were also used by van den Heuvel (2016) to study the effect of 
changing the stopping location of trains at Schiphol Airport. In their study, the 
researchers made use of video observations in combination with visual recordings 
by the research team, this was done to ensure the accuracy of the measurements and 
identify events that might cause issues with the validity of their study. Although the 
process is less labour-intensive compared to manual counts, the data collection is 
still limited in its scope due to viewing angles, battery life, and the need to have 
observers present. Oliveira et al. (2019), for example, mentioned that cameras would 
turn off after an hour and that some doors were out of the field of vision of the 
cameras requiring manual counts. In addition to this, there can be privacy concerns 
related to recording individuals in a public setting. This can also mean that it is not 
always possible to make use of video observations as a way to collect data. 

2.7.2 Automatic fare collection 
The last few years have seen an increase in the implementation of new technologies 
in the public transport sector. Where in times of the past one had to buy an actual 
paper ticket, sometimes even from a person, most operators offer applications or 
smartcards instead these days. Smartcard data can be a rich source of information 
with regard to passenger volumes. Depending on the system, passengers have to 
either only tap-in upon entry or they are required to tap-in and also tap-out when 
leaving the system. The latter provides an incredibly rich data source since it allows 
for the construction of origin-and-destination matrixes in addition to providing a 
good estimate of the number of passengers on trains. Having access to both the 
origin and destination of a passenger allows for in-depth studies of travel behaviour, 
especially when automatic passenger count data is present as well. 
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An example of a study using smartcard data is the work done by Van Den Heuvel 
and Hoogenraad (2014) who made use of automatic fare collection at the exit of 
stations to study the flow of passengers through three stations in the Netherlands. In 
their study, the researchers assessed transfer times by comparing the arrival times 
of trains to tap-out times, allowing the researchers to study transfer times as a result 
of a new train schedule. The researchers also assessed desired exit locations based 
on where passengers tap-out. Although these examples are not directly related to 
passenger counts and dwell times, it does highlight how smartcard data is a rich 
source of data. An example closer related to dwell times is a study by Peftitsi et al. 
(2020) who used automatic fare collection from the metro system in Stockholm. In 
their study, they used this data, in combination with load-weight data to study the 
distribution of passengers on metro trains. 

Although a rich source of data, automatic fare collection does have some practical 
drawbacks. A prerequisite for the use of automatic fare collection data, be it by 
means of smartcards or smartphones, is that passengers need to at least tap-in at their 
origin station. This is, however, not always the case. Where some stations in the 
Netherlands have been turned into a proverbial fortress, where one needs to tap-in 
and tap-out to even just cross the station, this is not the case in many other places in 
the world. For example, in Skåne, where the University of Lund is located, 
passengers make use of a smartphone app to buy tickets and there is no need to 
either tap-in or tap-out. In addition to this, if passengers are only required to tap-in 
at their origin station, as is the case in Stockholm for example, it is often not possible 
to make a distinction regarding the direction of travel. This means that if trains 
running in both directions halt at a station around the same time, it is not directly 
possible to identify which train is taken. Different data collection methods are 
needed in those cases, such as the use of systems that automatically count the 
number of passengers boarding and alighting a train. 

2.7.3 Automatic passenger count data 
Automatic passenger count data refers to passenger count data that is automatically 
collected on trains, hence the name. Several ways to count passengers exist. 
Examples of this are studies by Peftitsi et al. (2020) and Fang et al. (2019) who 
made use of load-weight data to study the preferred carriage of passengers in 
Stockholm and London respectively. Load-weight data provides an assumption 
about the number of passengers on board a train based on the weight of the train. To 
so do, the weight of the train upon departure minus the empty weight of the train 
can be divided by an average weight of passengers. When making use of load-
weight data it is important to calibrate the collection method to the local context 
since passenger counts are not accurate if the average weight that is used is too high 
or too low. Peftitsi et al. (2020) state that the average weight is 78 kilograms per 
passenger including luggage, whereas Fang et al. (2019) use a value of 75 kilograms.  
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Although load-weight data has several important benefits over the use of manual 
counts or video observations, it still has some drawbacks. The first drawback is that 
the estimation of passengers based on weight is not always accurate since an 
assumption about the average weight has to be made1. Furthermore, due to the way 
in which load weight data is collected, often by making use of sensors in the 
suspension of a carriage, the retrieved information is limited to an aggregation on a 
carriage level. Only having access to passenger count data on a carriage level means 
that more detailed analyses such as the identification of the critical door or the 
spread of passengers between the doors are not possible. This is where another 
method to automatically count passenger volumes comes in, this being automatic 
passenger count systems which make use of sensors at each door.  

Making use of sensors at each door to count passengers does not require an 
estimation of the average weight of passengers and makes it possible to collect 
information on a door-by-door level. That being said, this is not always the case that 
this kind of data is always available on a door-by-door level. A study by Palmqvist 
et al. (2020), using counts from commuter trains in Stockholm, was still limited to 
information on carriage level due to the way the data was collected and aggregated. 
A study by Buchmueller et al. (2008), using highly detailed automatic passenger 
count data from commuter trains in Switzerland, shows how having a highly 
detailed level of detail of automatic passenger count data on a door-by-door basis 
makes it possible to study dwell time at a greater level of detail. In their study, 
Buchmueller et al. (2008) not only had access to the number of passengers on a 
door-by-door level but also to the timestamps of both the first and last passenger 
through the door and timestamps for the opening and closing of each door. By 
having access to such detailed data it was possible to study the time it takes for each 
sub-process of dwell times, allowing the researchers to construct a figure as 
previously shown in Figure 6. 

2.7.4 Using mobile phone data 
Both automatic fare collection and automatic passenger count data are not always 
available, either the systems are not present or the data cannot be shared freely. This 
calls for different methods to collect information on the number of passengers on 
board a train. An example of a study that made use of a more exotic way to collect 
passenger counts is the study by Sørensen et al. (2018) who utilized cell phone data 
to measure the number of passengers on board a train. One reason to do so is that 
passenger count data is not easily made accessible by operators.  

  

                                                      
1 I, for example, would count for 1.35 passengers in Stockholm at the time of writing. 
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To overcome this issue, the researchers collected information on the number of 
phones connected to selected base stations. The selected base stations were located 
in such a way that it was likely that the majority of the mobile phone traffic was 
generated by passengers. Their results show that using mobile phone data is a 
promising way to substitute other passenger counts. This being said, as with 
passenger count data, gaining access to mobile phone data can also be difficult 
which means that although the method proposed is promising, it might not always 
be feasible to collect passenger counts by making use of mobile phone data. 
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3 Scope of this thesis 

3.1 Problem outline 
Railways have the potential to play a big role in our shift towards a more sustainable 
way of travelling, both for medium and long distances. However, current levels of 
punctuality reduce the attractiveness of trains as a mode of transport and with this 
its competitiveness against other transport modes. The poor punctuality of railways 
in Sweden not only affects the experience of those who currently travel by rail but 
also hampers a modal shift away from private motorized transport, something which 
is necessary to help reduce greenhouse gas emissions from the transport sector.  

As stated by Palmqvist et al. (2017) there is reason to believe punctuality issues are 
a result of errors in the timetable. Recent years have seen much effort being placed 
on introducing better timetable practices to ensure an on-time performance of trains, 
with advancements from operational research trickling down to practice (Caimi et 
al., 2017). Despite this, the process of dwell time scheduling has remained more or 
less stagnant and is mostly based on general assumptions in practice (Christoforou 
et al., 2020; Palmqvist, 2019), whilst an important part of the timetable planning 
process for commuter trains is to accurately estimate and schedule dwell times 
(Buchmueller et al., 2008).  

An analysis of the scheduled dwell times in Skåne, southern Sweden, between 2012 
and 2020 revealed that the scheduled dwell times have not changed for most stations 
during this period. At the same time, passenger volumes have increased which 
means that it is likely that more time is needed for passengers to board and alight a 
train, and the infrastructure is used more intensively which increases the risk of 
small disturbances to cascade into larger delays, making the system less robust and 
stable. This phenomenon of dwell time scheduling practices not being changed is 
not unique to Sweden as Nash et al. (2006) identified a similar problem in 
Switzerland where passenger volumes had increased but dwell times remained 
stagnant, resulting in a situation where the scheduled dwell times were impossible 
to maintain. 
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Although it is easy to critique the static approach to dwell time scheduling, it must 
be said that deciding how much dwell time should be scheduled is a non-trivial task. 
The dwelling process involves several external factors which makes it subject to 
higher variability (Cornet et al., 2019) and makes it difficult to exactly know the 
necessary time upfront. The task of dwell time scheduling is made even harder due 
to a lack of understanding of the underlying causes of dwell time delays since dwell 
time delays are not well recorded (Harris et al., 2013; Pritchard et al., 2021; 
Volovski et al., 2021). Having a more in-depth understanding of how different 
factors influence dwell times is a necessary step towards more accurately scheduling 
dwell times, allowing for well-informed decision processes which will help to work 
towards reducing delays incurred by commuter trains along their journey. 

3.2 Research gap 
One reason why dwell times for commuter trains are not well understood is that 
most studies in the past were limited in either the size or the scope of their data. 
Studies on the behaviour of passengers during the boarding and alighting process 
often take place in laboratory or mock-up settings, see for example the work done 
by Daamen et al. (2008), Harris (2005), and Seriani and Fujiyama (2019a). Although 
valuable insights can be gained regarding the underlying processes and behaviour 
of passengers, results from laboratory studies do not always translate well into real-
world scenarios (Dobbins et al., 1988). As Luangboriboon et al. (2020) mention, 
even though laboratory experiments allow for a more in-depth study into the 
influence of a single variable, they may not completely reflect a real situation. The 
authors state that people may behave differently due to the environment in which 
the study takes place or the instructions that are provided. To overcome these issues, 
studies can take place outside of laboratory settings. Although studies in real-world 
settings make it possible to study the dwell time process in a more natural 
environment, these studies often rely on a limited number of observations on a few 
stations, see for example the studies by Oliveira et al. (2019) and Wiggenraad 
(2001). The limited sample size and geographical spread means that some effects 
might not be clearly identified and the findings that are made can potentially be 
limited to only a small subset of all stations. 

Using automatic data sources such as automatic passenger count data can help 
overcome the issue of having a limited sample since it enables the use of data from 
multiple stations, multiple railway services, and over a long period of time. 
However, as mentioned by Coulaud et al. (2023), only a few studies had access to 
both highly detailed passenger count and railway operational data, and most of these 
studies are limited to data on specific parts or lines of the network such as the studies 
by Christoforou et al. (2020), Cornet et al. (2019) and Coulaud et al. (2023), rather 
than the whole network.  
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The study performed by Palmqvist et al. (2020) is one of the few examples where 
dwell times were studied with a network-wide scope, using data from the railway 
network in Stockholm. Although the study also included data from Japan, this was 
again limited to only a small part of the network. As a result of this, there is a lack 
of studies into the relationship between passengers and dwell time on a network-
wide level and over an extended period of time. Filling this gap can help to increase 
the understanding of the effect of passengers on dwell times, increase the 
understanding of dwell time delays, and help inform planners when scheduling 
dwell times in the future. 

3.3 Research aim and questions 
The overarching research aim of this thesis is to develop knowledge of how dwell 
time delays arise in order to identify and describe potential ways in which dwell 
time delays can be reduced. A specific focus is placed on the role of passengers in 
the dwelling process in relation to dwell time delay. In addition to this, a secondary 
aim is to identify how dwell times can be studied on a network-wide level. The 
following research questions form the basis of this thesis, and when answered, will 
help towards achieving the research aims: 

 

Research question 1 
What are the causes of dwell time delays for commuter trains? 

 
Research question 2  
How do boarding and alighting passengers influence the duration of dwell times for 
commuter trains? 
 
Research question 3 
How can dwell time delays be studied in a network with automatic passenger 
count data?   
 
Research question 4 
Which types of measures can be taken to reduce dwell time delays for commuter 
trains? 
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3.3.1 Motivation and relationship of the research questions 
The four research questions that make up the backbone of the work presented in this 
thesis do not stand on their own and the way in which the research questions are 
connected is graphically shown in Figure 11. As the figure shows, research question 
1 feeds through to both research questions 2 and 4, with the answer to research 
question 1 partially answering both questions. A similar relationship is present 
between research questions 2, 3, and 4 with research questions 2 and 3 partially 
answering research question 4.  

 

 
 

Figure 11: Relationship between the four research questions. 

 

The development of research questions 1, 3, and 4 was guided by the overarching 
aim of this thesis. Research questions 1 and 4 arose from the need to define measures 
to reduce the risk of dwell time delays for which an understanding of the causes was 
necessary first. Research question 3 arose from the need to be able to better identify 
dwell time delays since current delay indexes obscure the presence of smaller 
delays. In contrast to this, research question 2 was defined based on the answer to 
research question 1. During the process of identifying the likely causes for dwell 
time delays it became clear that the influence of passengers plays a substantial role 
and more in-depth knowledge on this relationship is needed, thus forming the basis 
for research question 2. 
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methodology and reviewing of the manuscript.  

Kuipers was the main author for Paper II and the work was done in close 
collaboration with Palmqvist who assisted with the methodology, initial writing of 
the manuscript, and the later reviewing of the manuscript. The formal analysis was 
performed by Kuipers.  
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4.3 Relationship between included papers 
The relationship between the six included research papers is illustrated in Figure 12. 
Most papers, with the exception of Paper V, stem from the findings in Paper I which 
serves as an umbrella for the research that was conducted. The findings from Paper 
I revealed which passenger flow characteristics are relevant to focus on when 
studying the impact of passengers on the duration of dwell times. Based on this it 
was decided to focus on the volume and spread of passengers in Paper II and Paper 
III respectively. The findings from, and method used in, Paper II shaped the research 
conducted in Paper IV where the impact of the volume of passengers was further 
investigated. In contrast to the other papers where the focus was placed on the effect 
of passengers on dwell times, the study conducted in Paper V focussed more on 
understanding dwell times from an operational context. The knowledge gained 
along the way was combined into the study that makes up Paper VI, where variable 
choices were informed based on findings from the results of all papers, with the 
exception of Paper V. 
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Figure 12: Relationship between the papers included in this thesis. 

4.4 Relation between the research questions and papers 
 

The research questions described in Section 3.3 are answered by combining findings 
from the different papers included in this thesis. An overview of the relationship 
between the research questions and the included papers is shown in Table 1. All 
research questions are answered by combining the findings of at least two of the 
included papers. There is a heavy and deliberate emphasis on answering research 
question 2, given the important role that boarding and alighting passengers play in 
the dwelling process. A strong emphasis is also placed on research question 4, where 
the findings from several papers are combined to describe possible measures which 
can help to reduce dwell time delays 

 
Table 1: Relation between the research questions and included papers. 

Research question Paper 

1 What are the causes of dwell time delays for 
commuter trains? I, VI 

2 
How do boarding and alighting passengers 
influence the duration of dwell times for commuter 
trains? 

I, II, III, IV, VI 

3 How can dwell time delays be studied in a network 
with automatic passenger count data? II, IV, VI 

4 Which type of measures can be taken to reduce dwell 
time delays for commuter trains? I, II, III, IV, V 
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5 Methods 

This chapter describes the methods that have been applied throughout the work done 
that makes up this thesis, and an overview of the different methods used in each 
paper is provided in Table 2. There is a heavy emphasis on the use of quantitative 
methods, with only the literature review being a qualitative method. The use of 
mostly quantitative methods was guided by the available data which lends itself well 
to the use of different quantitative approaches to study various relationships between 
passengers, operational conditions, and dwell times.  
Table 2: Methods used for the papers included in this thesis. 

Method Paper 
Literature review I 

Visual graphical analysis II, IV 

Statistical analysis II, IV 

Item response model V 

Regression analysis III, VI 

 

Although there exists a large body of literature that focuses on how passengers 
influence dwell times, much of these findings are dispersed across a multitude of 
different studies. A systematic literature review was, therefore, conducted in Paper 
I to collect and organize the state-of-the-art on how passengers influence dwell 
times. A visual graphical analysis was performed in Paper II and Paper IV to 
discover trends in the data. The graphical visual analysis was chosen here since it is 
a straightforward explorative data analysis technique where trends are observed by 
visually representing the data. The outcome of such an analysis is then used to guide 
further analyses. Following these visual graphical analyses, several different 
statistical analyses were performed in Paper II and Paper IV to test a series of 
hypotheses. The study in Paper V made use of an item response model, namely a 
Rasch analysis, to provide a framework to understand the combined effect of 
stations and railway services on dwell times. Regression analyses were chosen for 
Paper III and Paper VI to understand the impact of multiple variables on either the 
probability of a dwell time delay, presented in Paper III, or on the duration of dwell 
times as is the case for Paper VI. 
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5.1 Systematic literature review
Paper I

A systematic literature review was chosen as the method for Paper I since it allows
to comprehensively record and assess the state-of-the-art on how passengers 
influence dwell times. The eight-step framework, schematically shown in Figure 13, 
as described by Denyer and Pilbeam (2013) was used to perform the systematic 
literature review. In addition to the eight steps proposed by Denyer and Pilbeam 
(2013), an additional step of backwards snowballing, as described by Jalali and 
Wohlin (2012), was included in the literature search. This additional step was 
necessary to overcome the issue of missing papers during the initial search as a result 
of an inconsistent use of terminology in the published literature. Terms such as dwell 
time and passenger service time are used by different authors, for example.

An important step in the literature review is the evaluation of the quality of the 
literature. The critical appraisal tool for evidence-based librarianship (Glynn, 
2006) was used to perform this evaluation step in which a score is assigned to each 
article. These scores are based on predefined criteria that focus on the population 
being studied, the way in which data is collected, the design of the study, and how 
the results of the study are reported. Articles were then classified as having either a 
good or questionable quality in all four categories as well as an overall score. When 
a paper was determined to be of questionable quality it was re-examined and a 
decision was made to include or exclude the paper based on this critical re-
examination.

Figure 13: Schematic overview of the systematic literature search.
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The aim of the literature search was to present the way in which passengers affect 
dwell times, both before and during the boarding and alighting process, and the 
underlying causes hereof. Given this aim, keywords related to passenger 
distribution and boarding and alighting behaviour were used to systematically 
search the databases. These keywords were combined with additional phrases such 
as station and platform to narrow down the results. This choice and phrasing of these 
keywords was based on the preliminary findings whilst mapping the field in step 
one of the framework that was used. 

The literature search took place during March 2020, and the period of the 
publications was limited to January 2000 and March 2020. Papers were excluded 
when the results were based on a model without elaborating on passenger 
characteristics, used fixed boarding and alighting times, focused on busses, or 
focused on dwell times solely from a timetable perspective. In addition to these 
criteria, the location was added as an additional criterion for studies that focussed 
on passenger flow characteristics. This criterion was added since the literature 
review focussed on passenger behaviour within a European context and walking 
characteristics and the space maintained between pedestrians are not similar 
between all cultures. North American and European passenger flow characteristics 
are found to be relatively similar (Daamen, 2004), meaning that only studies 
originating from either of these two continents were included. 

5.2 Visual graphical analysis 
Paper II & Paper IV 

The expected trends and distributions of the variables were not clear from the start 
for most papers, especially since the studies make use of a large amount of data. 
Paper II and Paper IV, therefore, included an exploratory data analysis by means of 
plotting the data and visually assessing trends, a technique known as visual 
graphical analysis. Visual graphical analysis is an explorative technique that can 
aid in the analysis and interpretation of the data by visually representing the 
information (Wainer & Thissen, 1981; Keim et al., 2006; Brown et al., 2007; 
Landmark et al., 2017). Visual graphical analyses have been applied within delay 
research in the past. For example, a common way to visualize the on-time 
performance of train lines is the use of delay profiles (van Oort & van Nes, 2009; 
van Oort et al., 2015) where each trip is plotted on a line graph to show the 
development of delays on a specific line. Another example of visual graphical 
analyses being used in railway studies is the use of heat maps to identify delay hot 
spots and to visualize characteristics of delays such as passenger loads and 
spatiotemporal factors (Christoforou et al., 2020; Huang et al., 2019).  
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The visual graphical analysis performed in Paper II consisted of plotting the 
frequency distribution of different sizes of dwell time delays for different groups of 
passenger volumes. A similar approach was used in Paper IV to compare the 
frequency of dwell time delays between the period before and during the COVID-
19 pandemic. In addition to the frequency of delays, the median and interquartile 
range for the different passenger flow characteristics such as the volume of 
passengers were plotted as well in Paper IV. This was done to visually assess any 
potential differences in the passenger flow characteristics between the period before 
and during COVID-19. 

5.3 Statistical analyses 
Paper II & Paper IV  

The following sections describe the different statistical analyses that have been 
performed, stating the paper in which the method was applied and the rationale for 
using the specified approach. There is an emphasis on the use of robust statistical 
analyses resulting in the use of mostly non-parametric statistical methods as 
opposed to the more generally applied parametric methods. The main reason for this 
is that both the data on dwell times as well as the data on passenger flows violate 
the assumption of normality present for parametric methods.  

5.3.1 Chi-Square goodness of fit test 
A Chi-Square goodness of fit test was applied in Paper II and Paper IV to study 
changes in the frequency of dwell time delays. The Chi-Square goodness of fit test 
is a non-parametric test that can be used to analyse the difference between groups 
when the dependent variable is measured at a nominal level (McHugh, 2013), such 
as counts or frequencies. In the case of Paper II, the interest was the difference in 
the distribution of delays for different groups of passenger volumes. The Chi-Square 
goodness of fit test was applied in Paper IV to assess the difference in the frequency 
distribution of delays between the period before and during the COVID-19 
pandemic. 

A transformation of the data was necessary in order to perform a Chi-Square 
goodness of fit test. This is necessary since the dependent variable needs to be 
measured on a nominal level, such as frequency counts, and dwell time data is 
collected on a continuous scale. The continuous variables of observed dwell time 
delays were transformed into frequency counts based on the size of the delay. It is 
important that the size of the buckets reflects a real-world situation, and that it 
allows to study changes in the frequency dwell time delays with sufficient detail. 
The choice was made to use group delays in buckets of fifteen seconds. 
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The scheduling regime in place makes use of steps of thirty seconds when planning 
process times. Having very small buckets, of one second, for example, would thus 
not reflect a real-world application. Having bucket sizes of thirty seconds was found 
to be too coarse to properly study dwell time delays, however, resulting in too few 
observations per group. One of the assumptions of the Chi-Square goodness of fit 
states that eighty per cent of the expected frequencies should at least have five 
occurrences (McHugh, 2013), which was not reached with bucket sizes of thirty 
seconds. Fifteen seconds was, therefore, chosen to be the happy middle. 

5.3.2 Kruskall-Wallis and Wilcoxon signed-rank tests 
Paper IV aimed to understand differences in both passenger flow characteristics and 
the length of dwell times between different groups, in this case, the period before 
and during the COVID-19 pandemic. The classical way to approach such a task 
would be to make use of a Student’s t-test, ANOVA, or paired t-tests. Given the 
need for robustness in the statistical analyses, as described before, non-parametric 
equivalents of these tests were used. One of such tests is the Kruskall-Wallis test 
which is the non-parametric equivalent of the ANOVA-F test and can be used to 
compare independent samples (Ostertagová et al., 2014). Another test that was used 
is the Wilcoxon signed-rank test, which provides a non-parametric alternative to the 
paired t-test (King & Eckersley, 2019). 

5.3.3 Effect sizes for statistically significant findings 
The different tests above describe the approach taken for significance testing. It is, 
however, not enough to only report significant results and effect sizes should be 
reported as well (Brydges, 2019). Where significance testing is used to determine 
whether an effect is due to chance or not, the effect size is a measure of the practical 
relevance of a finding (Lantz, 2013). The type of effect size that is calculated is 
determined by the statistical test that is performed. The effect size associated with a 
Chi-Square goodness of fit test is Cohen’s W for example, whereas effect sizes for 
a Kruskall-Wallis or Wilcoxon signed-rank test are based on eta squared and 
Pearson’s r respectively. 

To interpret the effect sizes the suggestions provided by Cohen (1988) for the labels 
of the effect sizes were used throughout the studies that make up this thesis. In 
general terms, these labels are small, medium, and large with the values associated 
with these labels being dependent on the effect size measure that is used (Cohen, 
1988; Lakens, 2013). An overview of the effect sizes used and their respective labels 
is presented in Table 3. 
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Table 3: Effect size measured used. 

Effect size measure Small Medium Large 

Cohen’s w 0.01 0.3 0.5 

Eta squared 0.01 < 0.06 0.06 < 0.14 >= 0.14 

Pearson’s r 0. 1 < 0.3 0.3 < 0.5 >= 0.5 

 

5.4 Item response model 
Paper V 

The study presented in Paper V makes use of a so-called item response model, 
specifically the Rasch analysis technique. Initially developed by George Rasch 
(1980), the Rasch analysis technique is a psychometric technique which has been 
widely used in medical and health sciences and is designed to be used for 
questionnaire surveys in which participants are asked about their perceived 
difficulty to perform a specified task. The outcome of a Rasch analysis can be used 
to calculate intervals that represent the ability of a participant and the overall 
perceived difficulty to perform the specified task. Using both these indexes it is then 
possible to determine the likelihood of a given person successfully performing a 
given task. This is done by comparing the difference between the ability of a person 
and the difficulty of a task. This difference between ability and difficulty is central 
to the Rasch analysis technique. When the ability of a person is large compared to 
the difficulty of a given task, the probability of a successful response is larger and 
vice versa. A recent example of the use of the Rasch analysis technique within the 
domain of transportation is the study by Cheng and Chen (2015), who applied this 
technique to assess the accessibility of two cities in Taiwan. 

Although the Rasch analysis technique is commonly used for questionnaire data it 
was used in Paper V to study the ability of a given train service (i.e. the participant) 
to have a punctual dwell time, which was compared to the difficulty for all train 
services on the line have a punctual dwell time at a specific station (i.e. the task). 
Doing so allowed to study the relative dwell time performance of a given train at a 
given station, in a single dimension. Taking both service and station performance 
into account in a single dimension makes it possible to not only identify problematic 
train services or stations separately but also jointly examine stations and services. 
This means that it is possible to identify which services perform poorly at a given 
station. 
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A challenge to use the Rasch analysis within the context of dwell times is that dwell 
times are measured on a continuous scale. This is problematic since the Rasch 
analysis technique requires polytomous data such as responses collected on a Likert-
like scale. The continuous dwell time data does not fit this Likert-like scale directly, 
but it can be converted to fit. To make this conversion, the observed dwell time 
deviations were categorized according to predefined buckets. The size of these 
buckets is context-specific and it is important to keep operational constraints in mind 
as well as the observed data when defining the bucket size. The regime for labelling 
dwell time deviations used in Paper V is shown in Table 4. As can be seen, the 
continuous dwell time is converted into a five-point scale based on the size of the 
dwell time deviation, and the labels then be used in the Rasch analysis technique. 

 
Table 4: Labelling regime to transform continuous dwell time data to polytomous data for 
use in the Rasch analysis technique 

Dwell time deviation Label 

<= 0 seconds 5 

> 1 and <= 30 seconds 4 

>31 and <= 60 seconds 3 

> 61 and <= 90 seconds 2 

> 91 and <= 120 seconds 1 

>120 seconds 0 

 

5.5 Regression analyses 
Paper III & Paper VI 

In its simplest form, regression analyses allow to study the relationships between a 
dependent and one or several independent variables. Regression analyses are 
valuable since they allow the indication of whether there are statistically significant 
relationships between dependent and independent variables or not, indicate the 
strength of these relationships, and allow the user to make predictions (Sarstedt & 
Mooi, 2014). Two types of regression analyses were performed, this being logistic 
regression and quantile regression in Paper III and Paper VI respectively. 
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5.5.1 Logistic regression 
A logistic regression was used in Paper III to study the influence of the spread of 
boarding passengers on the probability of a train incurring a dwell time delay. 
Logistic regression is similar to multiple linear regression with the difference being 
that the response variable is binomial, and the result relates to the conditional 
probability that an outcome occurs based on a set of explanatory variables (Sommet 
& Morselli, 2017; Sperandei, 2014). The basic model for the log odds takes the form 
of Equation 3 (Sperandei, 2014), and the probabilities of an outcome occurring 
based on these log-odds can be determined by making use of Equation 4 (Sommet 
& Morselli, 2017). 

  
 

log
1-

= 0+ 1X1+ 2X2+..... mXm  (3) 

 

Probability = exp ( 0+ 1X1+ 2X2+..... mXm

1+exp ( 0+ 1X1+ 2X2+..... mXm
  (4) 

 

5.5.2 Quantile regression 
The study performed in Paper VI made use of a quantile regression. Quantile 
regression is an extension of ordinary least squares regression with the major 
difference being that quantile regression allows the modelling of the entire 
conditional distribution rather than just the conditional mean (Rodriguez & 
Yonggang, 2017). This means that it is also possible to study the effects of the 
independent variables on the dependent variable in different parts of the conditional 
distribution (Karlsson, 2006) such as the tails of the distribution (Belaïd et al., 2020). 

Quantile regression also allows to capture the variance in the relationship between 
the dependent and independent variables at different points in the conditional 
distribution as well as any asymmetry in the distribution (Waldmann, 2018). The 
basic model for the quantile regression is shown in Equation 5 (Rodriguez & 
Yonggang, 2017), and each quantile level, indicated by , yields a distinct set of 
regression coefficients.   

 ( ) = ( ) + ( ) + ( ) + + ( )  (5) 
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Quantile regression was chosen as the method of choice for Paper VI for several 
reasons. First, dwell time data violates some of the assumptions of ordinary least 
square regression, most notably the assumption of normality. This is to be expected 
since dwell times are likely to be longer than shorter making the distribution 
inherently skewed. This non-normality is handled in quantile regression as it does 
not assume a parametric distribution (Hao & Naiman, 2007; Kourtit et al., 2022). 
Quantile regression is also better adapted to handle outliers (Hao & Naiman, 2007) 
as well as heteroscedasticity (Waldmann, 2018) compared to ordinary least square 
regression. The common approach when dealing with ordinary least squares 
regression is to remove outliers in the data due to their negative impact on the model 
fit. Although extreme values can be considered to be outliers, this does not mean 
that these values do not hold relevant information when studying dwell times. It is, 
for example, possible to have large dwell times with few passengers and vice versa. 
Simply removing such occasions would lead to the occlusion of important 
information. 

In addition to quantile regression being better adapted to dealing with dwell time 
data compared to parametric approaches, the method was also chosen since it allows 
to study the relationship between dependent and independent variables outside of 
the mean (Kourtit et al., 2022). This is of interest when studying dwell times since 
the distribution holds more information than just the mean value. Quantile 
regression models provide the flexibility to identify how relationships between the 
dependent and independent variables change over different parts of the distribution 
(Cook & Manning, 2013; Staffa et al., 2019), the interpretation of the coefficients 
becomes nontrivial when using other non-parametric regression models. The 
interpretability of the influence of different variables on dwell time is important 
given objective of the Paper VI, and it was, therefore, chosen to make use of quantile 
regression. 
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6 Data used 

Several different datasets were used, with a strong emphasis on operational data 
from the railway system. The data type and origin of the data are shown in Table 5. 
There is a mix of data from the national railway system, provided by the Swedish 
Transport Administrator, and the local operators of two regions in Sweden. This 
being Storstockholms Lokaltrafik who are responsible for the commuter trains in 
the Stockholm region, and Skånetrafiken who are the body responsible for public 
transport in the region of Skåne in southern Sweden. The following sections explain 
what the data consists of, how it has been used, and what some of the differences 
are between the data received from Storstockholms Lokaltrafik and Skånetrafiken. 
 

 
Table 5: Overview of data used in this thesis. 

Data type Origin of data 

Literature data Scopus, Lund university 
library, experts 

Train movement data (LUPP) 
 

Swedish Transport 
Administrator 

Timetable data (Trainplan) 
 

Swedish Transport 
Administrator 

Automatic passenger count  
data on a train level 
 

Sorstockholms  
Lokaltrafik 

Automatic passenger count  
data on a door-by-door level 

Skånetrafiken 
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6.1 Literature data
The first data set used consists of literature data, collected by systematically 
searching the registries of Scopus and Science directly through the Lund University 
portal. The literature data was collected as part of the work in Paper I, which 
consisted of a systematic literature review. The body of literature was kept up to 
date during the years spent working on this thesis by making use of “Really Simple 
Syndication”, or RSS feeds for journals with relevant topics. This ensured that, to a 
large extent, the literature could stay up-to-date.

6.2 Train movement data
The train movement data that was used originates from track-side signal data, which 
can be accessed through a data layer called “LUPP” and is provided by the Swedish 
Transport Administrator. As explained in Palmqvist (2019) track-side signal data is 
coded by making use of track circuits to detect the presence of trains and timestamps 
are recorded when a train enters or exits the circuit. With regards to stations, these 
track-side detectors are often located at the edges of the station area, rather than in 
the middle of the platform, this principle is illustrated in Figure 14.

Figure 14: Schematic description of the location of data collection using track-side signals.

A train dwelling at a station is registered at signal 1 upon entry. Once the dwell 
process is completed the train will depart and is registered at signal 2. The dwell 
time is then based on the difference in the time registered at signal 1 compared to 
the time at signal 2. The actual dwell time is thus not collected at the platform where 
the train halts but at the edges of the station. To somewhat overcome this issue, an 
automatic adjustment is made to account for the time it takes for the train to go from 
signal 1 to the platform, and from the platform to signal 2. These adjustments are
usually set to be in the order of 10 to 20 seconds (Palmqvist, 2019). 
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Using these adjustments introduces a level of imprecision in the data. This is why 
the data which is stored in the LUPP database is truncated on a minute level to, 
somewhat, cover these imprecisions introduced in the data. This truncation does 
mean that LUPP data is not ideal when studying dwell times. The data does, 
however, still hold relevant information regarding train movements and the 
timetable. This was especially useful for the study making use of automatic 
passenger count data originating from Stockholm, Paper II, where information on 
the scheduled departure and arrival times of trains was not present in the automatic 
passenger count data. 

6.3 Timetable data 
Although the train movement data holds information on the scheduled times, these 
are not always the most accurate times since ad hoc changes can be made to the 
timetable. To make sure the correct timestamps for the scheduled arrival and 
departure times were used during the analyses, a data source called “Trainplan” 
containing up-to-date timetable data was utilized. Trainplan contains information 
on the actual scheduled arrival and departure times of trains, including any ad hoc 
changes. The inclusion of timetable data was especially important during the 
process of correcting for early arriving trains, which is described in Section 7.2. 
Correcting for early arriving trains is important since not correcting for longer dwell 
times due to an early arrival will lead to an overestimation of dwell time delays. 

6.4 Automatic passenger count data 
Automatic passenger count data was used in order to study the effect of passengers 
on dwell times. As the name suggests, this data holds information on passenger 
counts, more specifically the number of boarding and alighting passengers. In 
addition to the number of boarding and alighting passengers, the automatic 
passenger count data also provides the actual dwell time on a magnitude of seconds. 
This dwell time is recorded using an on-board system. 

Two datasets holding automatic passenger count data were used. The first came 
from the commuter trains in Stockholm, operated by Stockholms Lokaltrafik, for the 
period between 2013 and 2016. The second dataset consists of automatic passenger 
count data collected on board the commuter trains operated in the region of Skåne, 
where the trains are operated by Skånetrafiken. This dataset spans between 2016 
and 2020. 
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The commuter train network in Stockholm, shown in Figure 15a, serves 54 stations 
and consists of six lines with a combined length of 241 kilometres (Storstockholms 
Lokaltrafik, 2020). The commuter train network in Skåne, shown in Figure 15b, 
serves a much larger area with a total of 77 stations in the network. The network 
consists of nine lines with a combined length of 511 kilometres, with the shortest 
line being 15 kilometres and the longest being 107 kilometres. 

 

Figure 15: Schematic representation of the commuter train network in Stockholm (a) and 
Skåne (b) with some stations highlighted. 

6.4.1 High-precision dwell time data 
The automatic passenger count data provides the actual dwell time of a train in a 
magnitude of seconds, which is crucial when studying dwell times and dwell time 
delays. To illustrate why it is important to know the actual dwell time on a 
magnitude of seconds the percentage of stops with a given delay size is shown in 
Table 6, using both data from the track-side signals, i.e. the LUPP data, and dwell 
times from trains in Skåne. 

 
Table 6: Percentage of stops with delays from both the signalling data (LUPP) and automatic 
passenger count data (APC) from commuter trains in the region of Skåne. 

Year 
/Delay 
size 

No delay 1 min. 2 min. 3 min. 4 min. 5 min. 

LUPP APC LUPP APC LUPP APC LUPP APC LUPP APC LUPP APC 

2017 67% 24% 29% 65% 3% 9% 1% 1% 0% 1% 0% 0% 
2018 68% 10% 27% 77% 3% 11% 1% 2% 0% 1% 0% 0% 
2019 69% 15% 26% 71% 3% 12% 1% 2% 0% 1% 0% 0% 
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When making use of the LUPP data it seems that only a few dwell time delays occur, 
with about two-thirds of stops not having a delay and a third of the stops having a 
delay of up to one minute. However, when using data with dwell times measured on 
a scale of seconds it becomes clear that dwell time performance is not as good. The 
dwell time data collected on board the trains shows that less than a third of stops 
have no delay and the majority of stops have a delay of up to one minute. 

6.4.2 The same but different 
As mentioned, two different automatic passenger count datasets were used, one 
originating from the commuter trains in Stockholm and the other from the commuter 
trains in Skåne. Although both of these datasets consist of automatic passenger 
count data four important differences can be identified. First, is the way in which 
the data is collected. The trains that are operated in Skåne and Stockholm both use 
sensors to collect passenger counts, but their placement is different as schematically 
shown in Figure 16. The automatic passenger count system used in Stockholm, 
shown on the right, makes use of photocells which are located at floor level on the 
train doors. In contrast to this, the system used on the commuter trains in Skåne, 
shown on the left, makes use of ceiling-mounted infrared sensors. In the latter case, 
there is a minimum detection height of around one meter whereas the floor-level 
sensors do not have a minimum detection height.  

 

 
Figure 16: Difference between registration of boarding and alighting passengers for Skåne 
and Stockholm. 
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The different ways in which the data is collected come with their own drawbacks 
concerning the precision of data collection. In the case of the data originating from 
Stockholm, it is possible that the system reports more passengers than the actual 
number due to other objects, such as a suitcase or dogs, being recorded as well. In 
the case of the system used by Skånetrafiken, it is possible that the system 
underreports the number of passengers boarding and alighting since children could 
be too small to be recorded. If, for example, a class of four-year-olds takes the train 
for a school trip, it is possible that only the teacher will be counted. 

The second difference between both datasets is the way in which the data is made 
available. The passenger count data collected in Stockholm is aggregated on a 
carriage level. This means that the passenger count data provides information on the 
total number of boarding and alighting passengers for a carriage at a given stop. The 
data collected on board the commuter trains in Skåne, on the other hand, is made 
available on a door-by-door level. This means that the data not only provides 
information on the total volume of passengers on a carriage level but also shows the 
volume of passengers per door. Having such precise data allows for more in-depth 
analyses, such as the spread of boarding passengers. 

The third difference between both datasets which is worth mentioning is the number 
of trains equipped with an automatic passenger count system. For the trains in 
Skåne, all 99 trains in circulation are equipped with such a system. This is, however, 
not the case in Stockholm where approximately every seventh commuter train is 
equipped with an automatic passenger count system. This means that the data 
provides a sample of the population in the case of Stockholm, whereas the entire 
population is captured in Skåne. 

The fourth difference between both datasets that is worth pointing out is the way in 
which the dwell time is measured by the on-board systems. In the case of the trains 
in Skåne, the dwell time is measured as the time between the doors unlocking and 
locking. This means that the measured dwell time effectively captures the start of 
the alighting process up to the time the train is ready to depart, omitting the time it 
takes to dispatch a train. In the case of the commuter trains in Stockholm, the dwell 
time is measured based on the wheel-stop and wheel-start time. Here the dwell time 
thus also includes the dispatching time, which can lead to somewhat overestimating 
the effect of passengers on dwell times as delays can be a result of slow dispatching 
or slow acceleration of trains. 

  



64 
 

7 Data processing 

7.1 Combining the different data sets 
Before the train movement, timetable, and automatic passenger count data could be 
used for the analyses they had to be combined. Combining the different datasets 
made it easier to handle them and extract the desired information. This process was 
necessary throughout all quantitative analyses performed as part of this thesis, since 
no single database holds all the relevant information, and the task of combining the 
datasets took up a large portion of the work that was done. Several scripts were 
written using SQL (structured query language) to combine the different datasets. 
SQL is a programming language designed to process information stored on a 
relational database, making it well-suited for data handling. In order to be able to 
merge the different datasets it was important to identify which variables are similar 
between the datasets. Table 7 shows the different variables which were used to 
merge the datasets, and whether or not they are present in a given dataset. 

 
Table 7: Available variables to be used to merge different datasets. 

 Train 
movement data 

Timetable data APC-data 
from Skåne 

APC-data from 
Stockholm 

Train ID    X 

Date     

Arrival time     

Departure time     

Station     

Origin     

Destination     
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The rationale for the merging of datasets based on three variables is shown in Figure 
17. For this example, the target train represents an observation from the signalling 
data that needs to be matched with an observation from the automatic passenger 
count data. If the match is made using only the Train ID this would return four 
observations as a match, the same is true when only using the date. Three matches 
would be returned if only the station is used as the matching criteria. A better 
matching criteria should thus be used, which can be done by triangulating the three 
criteria as this leads to a single match between both datasets. 
 
 

 
 

Figure 17: Rationale for the merging of datasets based on three variables using SQL. 

 
The previous example is made possible since all datasets have a Train ID allowing 
for an easy match. The Train ID indicates the train number for that day and is used 
only once per day for a train running between its origin and destination. Combining 
the Train ID, station, and date thus leads to a unique identifier which can be used to 
make matches between different databases. The data originating from the automatic 
passenger count system in Stockholm lacks this Train ID. The merging of that 
dataset with other datasets is, therefore, more complicated. The rationale for this 
process is shown in Figure 18.  
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Figure 18: Rationale for the merging of datasets without having the Train ID numbers. 

The target train again represents an observation from the signalling data that needs 
to be matched with an observation from the automatic passenger count data. Since 
the Train ID is missing in the latter, a different approach was needed here. In this 
case, the arrival time, origin, and destination need to be used along with the date and 
station criteria. A margin of error of sixty seconds was allowed for the arrival time 
since the timestamps in the signalling data are aggregated on a minute basis, whereas 
the timestamps from the automatic passenger count data are recorded in seconds.  

Again, if only using the date or station as a criterion, four matches would be 
returned. Using the arrival time or the combination of the origin and destination 
would return two matches in both cases. Using the date, station, and arrival time as 
criteria would still result in two matches. This is because it is possible for two trains 
running in the opposite direction of each other to halt at the same station around the 
same time. To overcome this all five criteria were used together to make sure only 
a single match between both datasets was made. 
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7.2 Correcting for early arriving trains 
It is important to correct for early arrivals when dealing with dwell time deviations. 
Early arriving trains cannot depart before the scheduled departure time, leading to 
the dwell time being extended. These dwell time deviations are, however, not delays 
when the train still departs on time. The frequency of early, on-time, and late arrivals 
for each dataset is shown in Table 8, split out per year. Given the high frequency of 
early arriving trains, it is clear that not correcting dwell times for early arrivals can 
lead to severe overestimating the frequency and size of dwell time delays. It must 
be noted that the low portion of on-time arrivals in both datasets can be partially 
explained by the arrival punctuality being measured to the nearest second. 
 

Table 8: Frequency for early, on-time, and late arriving trains based on the difference 
between the actual and scheduled arrival times, measured to the nearest second. 

APC data from Skåne  APC data from Stockholm 
Year Early On-time Late  Year Early On-time Late 
2017 58% 8% 34%  2013 59% 1% 40% 
2018 64% 1% 35%  2014 64% 1% 35% 
2019 61% 1% 38%  2015 67% 1% 33% 
2020 51% 1% 49%  2016 67% 1% 32% 

 

The steps used to correct for an early arriving train are as follows: 

Step 1: determine if a train arrived early or on time. If yes, continue to step 2a, if a 
train arrives late, the adjusted dwell time deviation should be calculated using step 
2b instead. 
 
Step 2a: determine whether the train suffered a departure delay. If yes, then the 
dwell time deviation is equal to the departure delay. If no, then the dwell time 
deviation is equal to zero. 
 
Step 2b: the dwell time deviation is calculated by taking the difference between the 
scheduled dwell time and the actual dwell time. 
 
A train arriving early and leaving on-time will thus be registered as having a dwell 
time deviation of zero, even though the actual dwell time is larger than the scheduled 
dwell time. If a train arrives early and leaves late, only the departure delay is 
measured as the dwell time delay and the additional time from leaving early is 
excluded from this dwell time delay. 
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8 Summary of the included papers 

Paper I 
The passenger’s influence on dwell times at station platforms: a literature review 
Kuipers, R. A., Palmqvist, C.-W., Olsson, N. O. E., & Winslott Hiselius, L. (2021); Transport Reviews 
 
The study in Paper I aimed to present how passengers affect dwell times, both before 
and during the boarding and alighting process, along with the underlying causes. 
The chosen method was a systematic literature review which took place in March 
2020 and included key terms related to passenger distribution as well as search terms 
related to boarding and alighting behaviour.  

Reviewing 59 papers, published between January 2000 and March 2020, two 
distinct ways in which passengers influence dwell time during the boarding and 
alighting process were identified. The first aspect is the behaviour shown by 
passengers around the doors of a train. The reviewed studies showed that when 
boarding passengers crowd around the doors, the effective width of the door will be 
reduced which slows down the flow of alighting passengers. This behaviour was 
shown to be more prominent when a larger number of boarding passengers was 
present and is possibly related to increased stress levels. The second way in which 
passengers influence dwell times is the manner in which boarding passengers 
distribute themselves across the platform. When this spread is uneven, some doors 
will be over-used whilst other doors are under-used during the boarding process. 
This means that the boarding time will be extended at the busiest doors, whilst the 
boarding process is already finished at some other doors. 

Based on these findings it was concluded that adaptations to the design of rolling 
stock will only be beneficial if the behaviour of passengers is adapted as well. 
Adding wider doors will only result in benefits if passengers do not crowd around 
the door, and adding more doors is only beneficial when passengers spread out more 
evenly. The results also indicate a possible connection between the spread of 
boarding passengers and the behaviour shown at the door itself, given that stress 
levels increase when more passengers are present. When boarding passengers are 
not evenly spread, some doors are more likely to experience crowding. This findings 
suggests that both the spread and behaviour of passengers at the door should be 
addressed when implementing measures to reduce dwell time delays. 
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Paper II 
Passenger Volumes and Dwell Times for Commuter Trains: A Case Study Using 
Automatic Passenger Count Data in Stockholm 
Kuipers, R. A., & Palmqvist, C.-W. (2022); Applied Sciences 

 
The aim of Paper II was to understand the relationship between the volume of 
boarding and alighting passengers and the frequency of dwell time delays. The 
frequency of delays was chosen as the variable to study since this is more robust 
than using the actual size of dwell time delays. Furthermore, it can be argued that it 
is of more interest to understand how often a certain delay happens, and which 
delays are most common, compared to knowing the total or average delay size. The 
study made use of automatic passenger count data collected on board commuter 
trains in Stockholm between 2013 and 2016. The data provided both the volume of 
passengers and actual dwell times on a magnitude of seconds. Prior to the statistical 
analyses, the passenger volumes were grouped in bucket sizes of ten boarding and 
alighting passengers in order to define the sample space with respect to passenger 
volumes. The next step involved comparing the actual dwell times to the scheduled 
dwell time in order to count the number of dwell time delays. The dwell time delays 
were split then up into intervals of fifteen seconds. The frequency of dwell times 
given a specific volume of boarding and alighting passengers was then plotted and 
a visual graphical analysis was performed to highlight trends in the data.  

A Chi-square goodness of fit test was used to test for the effect of the number of 
passengers on the frequency distribution of dwell time delays, comparing the 
frequency distribution of dwell time delays under different passenger volumes 
against an unconditional distribution of dwell time delays. The unconditional 
distribution was based on all observations without making a distinction in terms of 
passenger volumes. The hypothesis tested states that if passenger volumes do not 
change the frequency of dwell time delays, all frequency distributions for dwell time 
delays will follow the unconditional distribution regardless of the volume of 
boarding and alighting passengers. The initial Chi-square test was complimented 
with post-hoc pairwise testing when a statistically significant result was found and 
the effect sizes for significant results were calculated based on Cohen’s W.  

The results show that dwell time delays occur more often as passenger volumes 
increase, but the delay size itself does not necessarily increase as passenger volumes 
increase. This is in contrast with other studies which indicate a linear relationship 
between dwell times and passenger volumes, where the frequency of delays would 
thus increase as the volume of passengers increases. It is only after a certain number 
of boarding and alighting passengers is present that the size of delays increases as 
well, and based on the data used in Paper II, this threshold seems to be around 20 
boarding and alighting passengers. 
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Paper III 
The spread of passengers on platforms and dwell times for commuter trains: A 
case study using automatic passenger count data 
Kuipers, R. A., & Palmqvist, C.-W. (2022); 11th Triennial Symposium on Transportation Analysis 
conference (TRISTAN XI), Mauritius 

 
The findings in Paper I indicated that the spread of passengers across the train doors 
can have a negative effect on dwell times. The studies found during the literature 
review are, however, limited to small sample sizes which can mean that the effect 
is less prominent than previously reported. The automatic passenger count data 
collected on board commuter trains in Skåne allows to study the spread of boarding 
passengers on a network-wide scale, using a large number of observations.  

Using this data, the work done in Paper III focussed on understanding the impact of 
the spread of boarding passengers on the probability of a dwell time delay on a 
network-wide level. This was done with the aim of gaining an understanding with 
respect to where it is relevant to make interventions aimed at spreading out 
passengers. A logistic regression model was used to determine the probability of a 
dwell time delay occurring given the spread of passengers, in combination with 
other variables such as the volume of passengers and the scheduled dwell time.  

Comparing situations with an uneven and even spread of passengers under different 
combinations of passenger volumes, proportion between boarding and alighting 
passengers, and scheduled dwell times, it was found that an uneven spread of 
passengers is most influential at higher volumes of boarding passengers. The spread 
of boarding passengers was found to only have a limited effect when passenger 
volumes are low. Although the probability of delays still increases in such a case 
this increase was found to be only marginal. As such, it was concluded that the 
return on investment in terms of the costs of applying measures to spread out 
passengers versus the gain in dwell time punctuality will be greatest at stations 
where the expected volume of passengers is relatively large and such measures are 
less effective at stations with relatively low passenger volumes. 
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Paper IV 
Impact of a lower demand during the COVID-19 pandemic on the frequency of 
dwell time delays 
Kuipers, R. A., & Palmqvist, C.-W. (2023); Transportation Research Interdisciplinary Perspectives 

 
Given the impact of passenger volumes shown in Paper II, it was of interest to 
understand what happens with dwell time delays if fewer passengers travel. 
Understanding the effect of a reduced volume of passengers can assist in 
understanding whether spreading the load of passengers across multiple trains can 
help to reduce dwell time delays. Previous studies have indicated positive benefits 
of flattening the curve of peak passenger demand on the need for rolling stock, but 
the impact on dwell time punctuality did not receive much attention. 

The COVID-19 pandemic provided an unprecedented opportunity to study the 
effect of a sustained reduction in passenger volumes on the dwell time punctuality 
of commuter trains. This is especially the case since Sweden did not introduce hard 
lock-down measures, meaning there were still commuting passengers. To study the 
effect of a reduced passenger demand on dwell time delays, three years of automatic 
passenger count data from Skåne was used. For the purpose of this study, the period 
of 2018 and 2019 was used as the pre-COVID period and data from 2020 as the 
COVID period. The study was limited to observations during peak hours to capture 
passengers who had to travel during both periods and can be assumed to be familiar 
with the railway system. 

The study made use of different statistical tests. A Chi-square goodness of fit test 
was used to understand whether the frequency of dwell time delays changed under 
COVID-19 conditions. A Kruskal-Wallis test was used to determine whether there 
were statistically significant changes in passenger flow characteristics. Inferences 
were then made based on the outcome of these tests. The initial findings indicated 
that there was a change in the frequency of dwell time delays, where a sharp 
decrease in the frequency of dwell time delays was observed during the beginning 
of the pandemic. The change in the frequency of dwell time delays coincided with 
a drop in the peak load of the number of boarding passengers, indicating a possible 
relationship. Further testing, by making use of a Wilcoxon signed-rank test, showed 
that the median length of dwell times reduced across a range of passenger volumes. 
This suggests that the increased number of non-delayed stops is not only caused by 
a reduction in passenger volumes. It was concluded that a reduced peak load of 
passenger volumes is likely to be a cause for the improvement found in dwell time 
delays, but this is not the sole reason. In order to reduce both the size and frequency 
of dwell time delays it can thus be beneficial to spread the load of passengers across 
multiple trains, but this will not be sufficient to ensure punctual dwell times and 
other measures are needed. 
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Paper V 
Dwell-time Station-Service analysis using Rasch analysis technique 
Kuipers, R. A., Tortainchai, C., Tony, N.C., & Fujiyama T; (article under review – Transportation 
Research Interdisciplinary Perspectives – first round of reviews) 

 
The aim of Paper V was to find a way in which the dwell time performance of both 
stations and services on a specific railway line can be studied in a single dimension. 
The study made use of data from commuter trains in the UK and commuter trains 
in Skåne and the method proposed in this study is the Rasch analysis technique. The 
aim of the study was two-fold. The first part aimed to show the applicability of the 
Rasch analysis technique in dwell time evaluations, given that it is a tool normally 
used for questionnaire studies rather than within an operational context. In addition 
to this the study aimed to highlight how the output of the Rasch analysis can be used 
to study the dwell time performance of a railway line.  

The Rasch analysis allows to combine both the station and service performance into 
a single dimension. This is done by comparing the relative ability of a service to 
have a punctual dwell time with the difficulty of all services to have a punctual dwell 
time at a given station. This indicator was introduced as the dwell time performance 
score in Paper V, where a higher score indicates a lower chance of dwell time delays 
and vice versa. Being able to calculate an indicator that combines both the relative 
station and service performance has a benefit over the more common approach of 
taking the average delay at a station since it allows one to identify which service, or 
group of services, is most likely to incur a delay.  

The results of the study show that the Rasch model can be used within an operational 
context and can adequately reflect the high and low-performing stations and 
services. The dwell time performance scores also revealed that, within the railway 
lines studies in Paper V, there are no stations for which all services are likely to 
incur a dwell time delay. Such insights would not be available when using the 
average dwell time delay for stations or services. It was, therefore, concluded that 
the Rasch analysis technique can be applied within an operational context such as 
dwell time studies, and that the outcome of a Rasch analysis can help to identify 
problematic services. Having insights into which services are problematic in terms 
of dwell times will allow planners to more actively target efforts to reduce dwell 
time delays. 
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Paper VI 
Understanding dwell times using automatic passenger count data: A quantile 
regression approach 
Kuipers, R. A. (2024); Journal of Rail Transport Planning & Management 
 
The objective of the study that formed Paper VI was to study the effect of different 
explanatory variables on the conditional distribution of dwell times. The study made 
use of a quantile regression model. Although a common way to study these 
relationships is to make use of ordinary least square regression models, such models 
are sensitive to outliers, can only model the conditional mean, and require data to 
be normally distributed. In contrast to this, quantile regression allows to study the 
conditional distribution across different percentiles. This means that in addition to 
modelling the conditional median, a quantile regression approach also allows to 
study the effects of the independent variables on the dependent variable in the tails 
of the distribution. The quantile regression is also more robust to outliers and 
heteroscedasticity, making it more suitable for dwell time research given the nature 
of dwell time data. The final model included variables relating to passenger flow 
characteristics, the operation of trains, and the historical dwell time at stations. 
These variables were previously identified to be relevant with respect to dwell times. 

The model fit was found to be promising and summary plots showed that 
coefficients from the quantile regression model differ from those originating from 
an ordinary least squares regression model. Furthermore, the coefficients of the 
quantile regression model were found to change across the different percentiles. 
This indicates that the use of quantile regression over ordinary least squares 
regression is justifiable and beneficial when studying dwell times. 

Numerical examples were used to further understand the impact of the different 
variables included in the model. The results of these numerical examples indicate 
that it is important to account for station-specific characteristics when scheduling 
dwell times, which is currently not common practice. This is shown by the impact 
of the passenger flow characteristics and the historical dwell times, which are all 
variables that are different from station to station. In addition to this, the results 
further highlight that the volume of boarding passengers is not the main determining 
factor for the duration of dwell times since the spread of passengers is found to play 
a larger role. The third observation is that arrival punctuality plays a major role in 
the duration of dwell time. Although trains arriving early do not necessarily lead to 
delays, the longer dwell times can be problematic in terms of capacity utilization. 
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9 Answers to the research questions 

Research question 1  
What are the causes of dwell time delays for commuter trains?   
Paper I, VI 
 
The first research question of this thesis is aimed at identifying possible causes for 
dwell time delays, specifically within the context of commuter trains. As shown in 
Section 2.4, several general causes for dwell time delays have been identified by 
Harris et al. (2013) and Pritchard et al. (2021). Their causes can be summarized in 
three distinct groups, these being the scheduling principles of dwell times, the 
operation of trains, and the presence of passengers. The results from Paper VI 
indicate that the operational variables such as the historical dwell time at a given 
station and arrival punctuality of a train can have a stronger influence on the length 
of dwell times compared to passenger flow related variables. Trains arriving early 
will lead to extended dwell times since such trains have to wait longer than 
scheduled before they can depart. Similar findings were reported by Kecman and 
Goverde (2015). It must be noted that a train can still depart on time in these 
instances, so although early arrivals can have a strong influence on dwell time 
deviations the impact on dwell time delays is likely less prominent.  

The way in which dwell times are scheduled can be a cause for dwell time delays. 
Past studies have highlighted that when the scheduled dwell time is not realistic this 
increases the chance of a dwell time delay occurring. Scheduling realistic dwell 
times means that the scheduled dwell time should account for the dynamic nature 
of passenger flows and be aligned with the expected passenger demand. This latter 
aspect also suggests that the process of dwell time scheduling should be revised over 
time to reflect changes in passenger demand. In practice, this is often not the case, 
however. In Skåne, for example, the scheduled dwell time remained the same 
between 2012 and 2020. This whilst the passenger demand did change over the same 
period of time. Furthermore, current scheduling practices in Sweden dictate that 
dwell times are scheduled the same for peak and off-peak hours and all services in 
circulation. This is likely done in favour of cyclicity and symmetry in the timetable 
which has benefits when designing a timetable and makes the schedule easier to 
understand for passengers.  
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This rather static approach to scheduling dwell times does, however, not align with 
reality as passenger demand changes throughout the day and the necessary dwell 
time during peak hours can be different to that during off-peak hours at the same 
station. Current scheduling principles in Sweden also define the dwell time to be the 
same for most stations within a network, meaning that station-specific 
characteristics such as the passenger demand and layout of a station are not taken 
into account when scheduling dwell times. 

With respect to the operation of trains, the literature reviewed in Paper I suggests 
that staff can influence the duration of dwell times by allowing late arriving 
passengers to board. Another aspect of the operation of trains which can be the cause 
of dwell time delays is the maintenance of the rolling stock. Broken doors mean that 
the effective number of doors available to boarding passengers is reduced, and this 
results in passengers having to reposition to the nearest door upon the arrival of the 
train. 

Although dwell time scheduling principles and operation of trains can be considered 
to be case specific, meaning that the above-mentioned causes are not omnipresent, 
a consensus found in the literature reviewed in Paper I is that the time it takes for 
the boarding and alighting process to be completed effectively defines the duration 
of dwell times. More specifically, as the study by Buchmueller et al. (2008) showed, 
the boarding and alighting time at the most critical door defines the total dwell time 
of a train in a normal situation. In this case, the most critical door is the door where 
boarding and alighting take the longest. Since the boarding and alighting process 
defines the length of dwell times, this is also the most likely cause of dwell time 
delays.  

To conclude, it can be stated that the dwelling process is complex and no single 
cause can be identified as to why dwell time delays occur. Nevertheless, the findings 
presented here suggest that the main cause for dwell time delays under normal 
operating conditions, i.e. without door failures, is the boarding and alighting process 
taking longer than what is accounted for in the scheduled dwell time. On the one 
hand, this is possibly a result of unrealistic dwell time scheduling, where the 
scheduled dwell time does not accurately reflect the actual time needed to complete 
the boarding and alighting process. On the other hand, it is possible that the boarding 
and alighting takes longer than scheduled as a result of the behaviour of passengers.  
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Research question 2 
How do boarding and alighting passengers influence the duration of dwell times 
for commuter trains?   
Paper I, II, III, IV, VI 
 
Given the influence of passengers on the duration of dwell times, it is of interest to 
further understand how boarding and alighting passengers influence the duration of 
dwell times. The conceptual model of dwell times by Li et al. (2016) defines the 
flow of passengers as a function of the volume of passengers, passenger 
characteristics such as their mobility, and the capacity of the door. This definition 
does, however, not capture all factors that influence the flow of passengers. The 
behaviour of boarding and alighting passengers, such as how boarding passengers 
spread out and how queues are formed around the doors, are also important aspects 
concerning the time needed to complete the boarding and alighting process.  

Building upon the conceptual model of dwell times presented by Li et al. (2016) and 
the hierarchy of passenger influences on dwell times presented in Paper I, a flow 
diagram of how passengers influence dwell times was defined. This flow diagram 
is presented in Figure 19. Two distinct situations in which passengers influence 
dwell times have been identified, the first being clustered boarding and alighting. 
Clustered boarding and alighting is characterized by boarding passengers being 
present on the platform before the train arrives. The second situation that has been 
identified is that of late arriving passengers, characterized by boarding passengers 
arriving near or at the end of the dwelling process close to the scheduled departure 
time of a train. The two situations can both be present during a dwelling process, 
with the majority of passengers being present ahead of the arrival of a train and a 
small number of boarding passengers arriving close to the departure time of a train. 

The effect of late arriving passengers is rather straightforward. In such cases, delays 
arise when the door-closing sequence cannot be initiated since a train cannot depart 
before all doors are locked. One reason for the doors not closing is excessive service 
by a member of staff, holding a door open for passengers who arrive on the platform 
late to allow those passengers to still board the train. Another way in which late-
arriving passengers can extend dwell times is through an act often referred to as 
door holding or door forcing. In such cases, a late arriving passenger holds or forces 
the door open which impedes the closing of the door. Door holding not only stops 
the doors from locking it can also necessitate the door locking procedure to be 
reinitiated, even further extending dwell times.  
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Figure 19: Flowchart for the influence of passengers on the boarding and alighting time. 

The way in which passengers influence the length of dwell times is more 
complicated during the process of clustered boarding and alighting, where the flow 
of passengers and the volume of passengers define the time needed to complete the 
boarding and alighting process. The flow of passengers is defined by a combination 
of the level of on-board congestion, passenger characteristics such as the presence 
of luggage and their level of mobility, and the level of interaction between boarding 
and alighting passengers. The way in which these aspects define the flow of 
passengers and ultimately the boarding and alighting time is a result of both the 
design of rolling stock and passenger behaviour2. 

  

                                                      
2 For an in-depth explanation of the influence of both passengers and rolling stock design on dwell 

times, I refer back to Section 2.5 and Section 2.6 of this thesis. 



78 
 

The next paragraphs provide a brief description of the way in which the four 
aforementioned factors affect the flow of passengers and some of the underlying 
processes involved. These descriptions are based on the literature reviewed in Paper 
I.  

The flow of passengers refers to the number of passengers that pass the door per 
second and is thus closely related to the speed at which passengers can either alight 
or board. The speed at which passengers can alight and board is a result of their 
characteristics and the horizontal and vertical gaps between a train and a platform. 
Passengers with reduced mobility or who carry luggage can have more difficulties 
traversing larger gaps between the train and the platform. As a result, the flow of 
passengers slows down in such cases, extending the time needed to complete the 
boarding and alighting process. These gaps are a result of the rolling stock in use, 
where design choices are made such as the presence of a level entry or not. 

The flow of passengers is also defined by the interaction between boarding and 
alighting passengers, where increased levels of interaction will slow down the flow 
of passengers. These interactions take place in the platform train interface area, in 
front of the doors of a train. This level of interaction is influenced by the formation 
of queues by passengers waiting to board. When queues are formed in front of doors 
the level of interaction between the flow of alighting passengers and the queue of 
boarding passengers will increase as there is less space for alighting passengers to 
move through. The way in which boarding passengers position themselves around 
the doors of a train also affects the effective door width, which becomes narrower 
when passengers stand in front of the door as opposed to next to the door.  

The effective door width is relevant with regard to the effect of the volume of 
passengers on the boarding and alighting time. When more passengers are present 
the time needed to complete the boarding and alighting process will likely be longer. 
The extent to which the volume of passengers defines the boarding and alighting 
time is guided by the effective door width. Wider doors can allow for multiple lanes 
of boarding and alighting passengers, effectively doubling the flow of passengers 
through a single door. The door width is, again, a result of the rolling stock in use 
where a choice between wider or narrower doors is made. This is, however, the 
designed width and is not always the same as the effective door width. As mentioned 
before, the effective door width is dependent on the formation of queues. When 
boarding passengers queue in front of the door it is not possible to have multiple 
lanes of alighting passengers, which slows down the flow of alighting passengers 
and will increase the time needed for all passengers to alight. 
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The formation of queues is a result of the ratio between boarding and alighting 
passengers as well as the awareness of passengers regarding the location of the train 
doors. When the location of doors is indicated through the use of platform screen 
doors, for example, queues are more likely to be formed next to instead of in front 
of the doors. When the ratio between boarding and alighting passengers is skewed 
in favour of boarding passengers, it is more likely that queues are formed in front of 
the door. This behaviour is hypothesized to be a result of increased stress levels and 
the fear of not having a seat. This is more prominent when the majority of passengers 
are boarding since there is less pressure from the volume of the opposite flow of 
alighting passengers. The ratio between boarding and alighting passengers is in part 
defined by the spread of passengers between the doors of a train, along with the 
volume of passengers at a given station. When there is an uneven spread, a majority 
of passengers either board or alight through a limited number of doors, and the ratio 
will be skewed at those specific doors.  

The spread of boarding and alighting passengers is guided by the physical layout of 
the origin and destination stations. When passengers are aware of the layout of their 
destination station, specific doors are favoured to reduce the walking distance at 
their destination station. On the other hand, when passengers are not familiar with 
the layout at their destination they are likely to stand near already present obstacles 
on the platform such as pillars or ticket machines, make use of the available roof 
coverage, and wait near the entrance points of platforms. Since boarding passengers 
are likely to board through a door close to their waiting position and movement 
through a train is often limited, the waiting position of passengers defines which 
door is used to board a train as well as the door used to alight in most cases.  

The spread of boarding passengers is also guided by the awareness of the train 
halting position and the closeness to the departure time when entering the platform. 
Circulation of passengers on platforms slows down as the departure time of a train 
is closer, meaning that more passengers will wait near entrance points and a 
concentration of boarding passengers will occur at those places. Furthermore, when 
passengers are unsure about where the doors of a train will be, a higher 
concentration of passengers can be found in central locations of the platform and 
platform entrances as passengers opt to wait in a location where they are most sure 
that the train will halt. 

Once boarding passengers make it past the queues and through the door of a train it 
is the level of on-board congestion which defines the flow of passengers. On-board 
congestion is a result of the number of through passengers, i.e. the passengers that 
remain on the train, and the interior design of a train. Internal bottlenecks such as 
luggage racks and narrow doorways have been found to slow down the flow of 
passengers, extending the boarding time. It is not just the layout of a train but also 
the degree of on-board crowding which can cause congestion, where the flow of 
passengers is slowed down due to a lack of space for the boarding passengers to 
occupy. 
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Quantifying the effect of passengers on dwell times 
The explanations above provide an overview of previous research into the effect of 
passengers on dwell times. The next step is to quantify the effect of passengers on 
dwell times. Based on the available data from the automatic passenger counting 
systems it was possible to quantify the effect of the volume of passengers, the ratio 
between boarding and alighting passengers, and the spread of boarding passengers 
on the occurrence of dwell time delays. The following sections describe these 
findings. 

The impact of the volume of passengers 
A common assumption is that the volume of passengers is the main factor that 
defines the length of dwell times, and several studies have shown that the volume 
of passengers has a strong influence on the duration of dwell times. In most cases, 
these studies assume a linear relationship between the volume of passengers and the 
duration of dwell times (see for example: Antognoli et al., 2018; Lee et al., 2018; 
Palmqvist et al., 2020). This linear relationship means that a given amount of 
additional dwell time is to be expected for every additional passenger. However, the 
findings presented in Paper I show that such a linear relationship is likely, not 
present since multiple studies have found that the flow of passengers can change 
throughout the boarding and alighting process due to various reasons. 

The findings from Paper II also suggest that such a linear relationship between the 
volume of passengers and dwell time delays is indeed not present. Studying the 
frequency of dwell time delays under different volumes of passengers it was found 
that the frequency of delays does increase when the volume of passengers increases, 
but the size of these delays does not necessarily increase along with this. Taking the 
dwell time process as a whole, one additional passenger does thus not result in a 
fixed amount of additional dwell time. This being said, there is an effect of the 
volume of passengers on the frequency of a delay occurring, indicating that there is 
some effect of the volume of passengers on the likelihood that a dwell time delay 
will occur. 

Based on the effect found in Paper II, it is possible to assume that if fewer passengers 
travel, the frequency of dwell time delays will be reduced. Testing this hypothesis 
is not as simple as comparing the peak to the off-peak hours as the type of passenger 
would be different, commuters versus non-commuters, but requires a period in 
which there is a reduction in the volume of the same type of passengers. The 
COVID-19 pandemic and the Swedish government not introducing a hard lockdown 
provided exactly this opportunity. During the pandemic fewer people commuted, 
making it possible to study the effect of a sustained lower volume of passengers on 
dwell times. This was done in Paper IV by comparing dwell times and passenger 
flows of the two years prior to the COVID-19 pandemic to the first year of the 
pandemic. 
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The results in Paper IV show that an improvement in dwell time punctuality 
occurred in the same period as passenger volumes decreased. This initial result 
pointed towards the drop in the volume of passengers to be the main way in which 
passenger volumes have an effect on the frequency of dwell time delays. However, 
a pairwise comparison of the median observed dwell times revealed that an 
improvement was present across all passenger volumes, both lower and higher 
volumes, meaning that the reduction in passenger volumes was not the sole cause 
for the reduction in dwell time delays. 

To conclude, an increased volume of passengers leads to an increased frequency of 
dwell time delays. The size of these delays does, however, not change directly with 
an increase in the volume of passengers. This indicates that an increase in the 
number of boarding and alighting passengers does not always result in longer dwell 
times. Furthermore, a reduction in passengers was not enough to explain the 
improvement in terms of dwell time punctuality during the COVID-19 pandemic. 
This indicates that although the volume of passengers plays a role in the length of 
dwell times, other factors play an important role as well. 

The impact of concentrated boarding 
The literature reviewed in Paper I identified the spread of boarding passengers as an 
important factor with regard to dwell times. Studies by Fox et al. (2017) and Oliveira 
et al. (2019) introduce the term concentrated boarding for this phenomenon and 
show that it leads to substantially longer dwell times. Both of these studies made 
use of a limited number of video observations to study the effect of concentrated 
boarding on dwell times, however. To better understand the impact of concentrated 
boarding on dwell times it is of interest to study this relationship on a larger sample 
size, which was done in Paper III in which the probability of a delay under different 
combinations of the spread of boarding passengers, the volume of passengers, and 
the ratio between boarding and alighting passengers was studied. The findings 
reinstate the effect found by Fox et al. (2017) and Oliveira et al. (2019), be it less 
prominent.  

The results presented in Paper III show that the probability of a dwell time delay 
increases as a result of an uneven spread when passenger volumes are high, but less 
so in conditions with lower passenger volumes. Although concentrated boarding 
thus leads to longer dwell times and vice versa, this effect seems to only be present 
when the volume of boarding passengers is relatively high. These findings are quite 
intuitive since having a very small number of passengers waiting to board a train 
through a single door should indeed not require much more time compared to the 
same volume of passengers boarding through multiple doors. 
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The ratio between boarding and alighting passengers 
The ratio between boarding and alighting passengers was used as a proxy for the 
interaction between passengers in the platform train interface area. A ratio skewed 
towards boarding passengers is likely to result in an increased level of interactions 
between boarding and alighting passengers and thus longer dwell times. An effect 
that was previously also stated by Seriani et al. (2019) who found that the boarding 
and alighting time increases as the ratio is shifted towards a majority of boarding 
passengers. 

The ratio of passengers was, therefore, also included in the studies performed in 
Paper III and Paper VI. In both cases, the findings show that the impact of the ratio 
of passengers is not as prominent as the spread and volume of passengers. 
Furthermore, where the studies reviewed in Paper I indicate that a ratio in favour of 
boarding passengers will likely lead to longer dwell times, the findings in Paper VI 
contrast this. Here a negative relationship between dwell times and the proportion 
of boarding passengers was found. This negative relationship indicates that dwell 
times are likely to be shorter when the ratio between boarding and alighting 
passengers is shifted towards a majority of boarding passengers. No clear 
explanation for this reversed effect of the ratio of boarding passengers can be given, 
however. To conclude, the findings from both Paper III and Paper VI indicate that 
the ratio between boarding and alighting passengers on its own does not have a 
strong influence on the duration of dwell times. 

The volume of passengers as an accelerator 
Where previous studies have indicated that the volume of passengers is the main 
determinant for the duration of dwell times, the findings presented in this thesis 
suggest that the volume of passengers is not the main cause of dwell time delays. 
Instead, it acts as an accelerator for other effects such as the degree of concentrated 
boarding. To illustrate this, an excerpt from Paper III is presented in Table 9. The 
table shows the probability of a dwell time delay under different combinations 
between the volume and spread of passengers for trains arriving on time, during 
peak hours, and with a median ratio between boarding and alighting passengers. 

Looking at the probabilities in the table the following can be noted. When the spread 
of boarding passengers is even, an increase in the volume of boarding passengers 
does not have a strong effect on the probability of a dwell time delay. In such cases, 
the probability increases by one percentage point between the 25th percentile and 
75th percentile for the observed volume of passengers. Furthermore, comparing the 
probability of a dwell time delay between an even and uneven spread at the lower 
end of the passenger volumes shows that there is only a small effect of the spread 
of passengers on the probability of a dwell time delay. Such cases see an increase in 
the probability of a dwell time delay of five percentage points. 
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Table 9: Probability of a dwell time delay when a train arrives on time, during peak hours with 
a median ratio of boarding versus alighting passengers. 

 Even spread of 
passengers 

Uneven spread 
of passengers 

Volume of boarding passengers= 25th percentile 53%  58% 

Volume of boarding passengers = median 53%  63%  

Volume of boarding passengers = 75th percentile 54%  76%  

 

In contrast to this, the probability of a delay increases rapidly as passenger volumes 
increase when the spread is uneven, showing an increase of eighteen percentage 
points between the lower and upper end of the volume of boarding passengers. 
Furthermore, where the difference in probabilities between an even and uneven 
spread is only five percentage points for the 25th percentile for the observed volume 
of passengers, this effect is more prominent when passenger volumes are high. In 
such a case, having an uneven spread of boarding passengers increases the 
probability of a dwell time delay by twenty-two percentage points compared to a 
situation with an even spread of boarding passengers. This shows how the volume 
of passengers can act as an accelerator for the negative impact of an uneven spread 
of passengers on the probability of dwell time delays. 

Swiss cheese model for passenger induced dwell time delays 
In addition to showing how the volume of passengers can act as an accelerator, the 
example above also highlights how a large volume of passengers on its own does 
not necessarily lead to an increased probability of dwell time delays when the spread 
of passengers is favourable. This suggests that it is a combination of unfavourable 
factors, rather than a single variable, which leads to an increased risk of dwell time 
delays. Such a relationship can be visualized using a Swiss cheese model. 

The Swiss cheese model, proposed by Reason (2000), is a way to visualize how the 
interdependencies of different elements within a complex system relate to the risk 
of errors. Since its publication, the Swiss cheese model has become the dominant 
paradigm for analysing errors in systems (Perneger, 2005). According to the 
metaphor, several layers of a system need to line up for an error to occur and each 
layer of the system comes with its own weaknesses, or holes as in a Swiss cheese. 
It is only when all these weaknesses, or holes, align that an actual error will occur 
(Perneger, 2005; Reason, 2000). Extending this metaphor to dwell time delays, a 
“Swiss cheese model for passengers induced dwell time delays” is presented in 
Figure 20. The layers are represented by the volume of passengers, the spread of 
boarding passengers, the formation of queues in the platform train interface area, 
and the level of on-board congestion.  
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Figure 20: Swiss cheese model for passenger induced dwell time delays. 

 

The “Swiss cheese model for passengers induced dwell time delays” works as 
follows. A high volume of passengers increases the risk of dwell time delays, 
however, with an even spread of boarding this additional risk will be somewhat 
mitigated as the findings in Paper III show, leading to a situation as indicated with 
arrow A. Here there is no increased risk of dwell time delays since the spread of 
boarding passengers is favourable.  

When there is both a high volume of passengers and a strong uneven spread, both 
weaknesses line up. In this case, the next layer is the formation of queues around 
the doors and this will be the deciding factor for the risk of a dwell time delay. Based 
on the literature reviewed in Paper I, it is possible to assume that if boarding queues 
are formed in such a way that alighting passengers can form two rows of passengers, 
and the same can occur again with respect to the flow of boarding passengers, the 
risk of a dwell time delay will be lowered. On the other hand, if the queues are 
formed in such a way that the flow of alighting passengers is obstructed, dwell times 
are more likely to be extended. The final layer in the Swiss cheese model is on-
board congestion. Even if boarding passengers can enter the train in a swift manner, 
the flow of boarding passengers will slow down if there is a high degree of on-board 
congestion. 

It is worth pointing out that although late-arriving passengers have been identified 
to have an influence on dwell times as well, they are excluded from this model. The 
reason for this is that a passenger arriving late can increase the risk of a dwell time 
delay regardless of whether or not the clustered boarding and alighting was 
completed on time. 



85 
 

Research question 3 
How can dwell time delays be studied in a network with automatic passenger 
count data? 
Paper II, IV, VI 
 

To understand how to reduce dwell time delays it is important to understand the 
magnitude of the problem and measure to what extent the actual dwell times exceed 
the scheduled times. The methods that are commonly used to measure punctuality 
do, however, not provide an adequate way to measure dwell time delays. One reason 
for this is that punctuality is often measured at the final stations thus hiding 
fluctuations along the journey of a train (Olsson & Haugland, 2004). Furthermore, 
dwell time delays are often shorter than the threshold used for punctuality statistics 
which are commonly around five minutes. Previous research by Palmqvist (2019) 
showed that 80% of delays at stations in Sweden are smaller than three minutes, 
thus falling well below the delay threshold used to measure punctuality. A similar 
observation is made in this thesis, with a large portion of delays being less than 
thirty seconds. Since current techniques to measure punctuality obscure the presence 
of dwell time delays, there is a need for a different approach to measuring the 
punctuality of dwell times. 

A term often used alongside punctuality is that of reliability. A railway system can 
be considered reliable when the trains run on time most of the time (Vromans, 2005) 
and a similar definition can be applied to the reliability of dwell times. The dwell 
time is reliable when the actual dwell time corresponds with the scheduled dwell 
time, most of the time. Several different methods to measure reliability have been 
proposed in the literature. Rietveld et al. (2001) list the following indexes to measure 
reliability: 

 

 The probability of a train arriving with a delay 

 The probability of an early departure 

 The mean difference between the expected arrival and the scheduled arrival 
time 

 The mean arrival delay 

 the mean arrival delay given that a train arrives more than a predefined 
amount of minutes late 

 The standard deviation of arrival times 
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Although the list by Rietveld et al. (2001) is useful when the aim is to measure the 
reliability of a train going between its origin and destination stations, the proposed 
measurements cannot all be directly applied to measure dwell time punctuality or 
reliability. This being said, some of the proposed measurements are still applicable. 
It is possible to make use of the mean and standard deviations of dwell times, for 
example, as was done by Gysin (2018) and Pedersen et al. (2018). The mean dwell 
time can then be compared to the scheduled dwell time as a measure of punctuality, 
and the standard deviation provides an indicator of the stability of dwell times. 

Using the mean and standard deviation is, however, not a robust way to measure 
dwell time delays. Robustness in the measurements of punctuality is important since 
the distribution of delays is often non-normal with a substantial amount of smaller 
delays and very few larger dwell time delays. In such a case using the mean as a 
measure of central tendency is not fitting and a more robust measure such as the 
median should be favoured (Rousseeuw, 1991). It must be noted that using a 
measure of central tendency, be it the mean or median, does not provide a complete 
picture of dwell time punctuality since it will not show how often a delay occurs. 
To gain more information it is important to go beyond just using the average delay. 

Beyond the average delay 
Several different approaches to measure dwell time punctuality that do not make 
use of a measure of central tendency exist. One of these is to make use of the 
probability of dwell time delays, see for example the study by Palmqvist (2022). 
The probability is deemed to be more robust compared to using the average dwell 
time delay since large delays are less influential. A downside of using probabilities 
to measure dwell time delays is that they only provide a binary approach. This 
means that a train is either delayed or not, and a train that is 10 minutes delayed is 
counted the same as one that is 1 minute delayed (van Loon et al., 2011). 

A different way to measure dwell time punctuality is to use the probability, or 
frequency, of different delay sizes. This can be done by counting the occurrences of 
a delay within a given interval. An example of this is the study presented in Paper 
II where delays were split up into intervals of fifteen seconds. As with using the 
probability of a delay, counting how often a delay occurs is more robust to outliers 
since extreme values are only counted once and thus have less of an effect on the 
distribution. Different to using a binary probability, counting the frequency of 
delays allows to show how often a delay within a predefined interval happens. This 
has benefits over the use of a binary approach as it provides a better understanding 
of the size of the problem.  
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Consider the following dwell time observations, measured at a station with a 
scheduled dwell time of 60 seconds. 

 

 
 

The median for these dwell times is 64 seconds, with the first and third quartiles 
being 60 and 65 seconds respectively. The conclusion, in this case, would be that 
small dwell times occur at this station. Calculating the probability of a delay 
occurring at this station by dividing the instances where the dwell time is larger than 
60 seconds by the total number of observations, a the probability of a dwell time 
delay of 78% is found, indicating that delays are likely to occur at this station. 
Although both of these conclusions are correct, both cases obscure two important 
observations.  

First, the median dwell time provides no indication of how often dwell time delays 
occur, and second, both cases obscure the occurrence of some rather large dwell 
time delays. This is why using the frequency of different delay sizes becomes more 
informative. When looking at the frequency counts of the observed dwell time, 
shown in Table 10, it can be observed that extreme delays do occur but not often, 
and that small deviations are quite common on the other hand. Having this insight 
can help inform the decision-making process since the focus could be placed on 
these small delays, for example. 

 
Table 10: Example of frequency counts for dwell time delays. 

Delay size Shorter than 
scheduled No delay Max +5 

seconds 
Max + 10 
seconds 

Max + 15 
seconds 

> 15 
seconds 

Frequency 1 2 3 0 1 1 

 

  

60 – 65 – 59 – 64 – 60 – 150 – 75 – 65 - 63  
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Measuring station and railway service performance in a single dimension 
As stated by Pritchard et al. (2021) an important step in developing effective 
strategies to reduce dwell time delays is to identify hotspots where stations and/or 
railway services are likely to incur dwell time delays. Several different ways in 
which to identify such hotspots have been identified in Paper V, such as the use of 
clustering algorithms (Stoilova & Nikolova, 2017; Zemp et al., 2011; Zhou et al., 
2022). Such clustering techniques are, however, not able to account for different 
types of data such as both passenger demand and service performance data at the 
same time. Data Envelopment Analyses and other data frontier approaches have 
been proposed to, somewhat, overcome this issue (Khadem Sameni et al., 2016; 
Tortainchai et al., 2022). Although these approaches can evaluate the efficiency of 
each factor involved, these methods are not usable to represent interactions between 
different factors such as the interaction between stations and railway services. 

The described methods are applicable to study dwell times but are limited to either 
the performance of a station or that of a service, thus ignoring the possible 
interaction between both. This interaction is important since it is possible that only 
a few services cause a station to perform poorly in terms of dwell time, and vice 
versa. To understand this, there is a need for a tool which can take both station and 
service performance into account simultaneously. The method proposed in Paper V 
is the use of a Rasch analysis technique, a tool more commonly used in 
questionnaire studies. The results from Paper V suggest that the Rasch analysis 
technique can also be used within an operational context to study dwell times on a 
line level. The model output also shows that the Rasch analysis technique can 
adequately reflect the expected variability in dwell times for both railway services 
and stations.  

Comparing the output from the Rasch analysis technique to the median delay, the 
results in Paper V show that the Rasch analysis allows to better identify which 
services are likely to incur a dwell time delay at a given station. By having access 
to such information, planners can make more informed decisions when making 
adjustments to reduce the likelihood of dwell time delays. It is, for example, possible 
that the output from a Rasch analysis reveals that adjusting the scheduled dwell time 
for a few services halting at a specific station can go a long way, rather than 
scheduling longer dwell times for all services halting at that specific station. 
Although methods such as the Rasch analysis technique are more difficult to 
implement compared to measuring the average dwell time delay or recording the 
frequency of delays, the additional insights allow for a more accurate identification 
of problematic situations in terms of dwell time delays. 
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Robust regression analyses on dwell times 
When studying dwell time delays it is not just interesting to know the size of a delay, 
but also which factors have an effect on the duration of dwell times. This is 
commonly done by making use of regression models, see for example the work by 
(Coulaud et al., 2023; Palmqvist et al., 2020; Pritchard et al., 2021) which provide 
insights into the conditional mean of dwell times given a set of explanatory 
variables. Although the conditional mean is of interest, it does not provide 
information on the distribution of dwell times and suffers from the same limitations 
as the measures of central tendency described before. Furthermore, and more 
importantly, dwell time delays are likely to violate the normality assumptions 
associated with these regression approaches. The distribution of dwell times can be 
characterised by having a substantial amount of smaller delays and very few larger 
dwell time delays. The same is often true regarding passenger volumes where 
smaller volumes are much more common than large volumes of passengers. 

Several different approaches exist to overcome this non-normality issue such as the 
use of non-parametric regression models. However, the outcome of non-parametric 
regression models is difficult to interpret. This interpretability is important when 
studying the influence of different factors on dwell times, rather than when the aim 
is to predict dwell times. A quantile regression model was proposed in Paper VI, to 
overcome the non-normality issue whilst still retaining the interpretability of the 
outcome. Quantile regression is also a useful approach when the conditional 
distribution of the dependent variable is of interest as it allows to study the 
relationship between dependent and independent variables outside of the mean 
(Kourtit et al., 2022). Furthermore, quantile regression is also better adept at 
handling outliers in the data (Hao & Naiman, 2007) and at handling 
heteroscedasticity (Waldmann, 2018).  

The results in Paper VI indicate that the use of quantile regression for dwell time 
research is justifiable, as the results show different effects of the explanatory 
variables across the different percentiles, indicating that the assumptions of ordinary 
least square regression are not met (Staffa et al., 2019). Furthermore, the coefficients 
for the variables included in the model were found to change throughout the 
distribution, differing significantly from the ordinary least square coefficients in 
most cases. This indicates that using an ordinary least square regression model only 
provides limited information regarding the effect that the explanatory variables 
chosen in Paper VI have on dwell times. These findings suggest that more robust 
regression methods are more fitting when studying dwell times. 

  



90 
 

The importance of effect sizes 
The final point worth making with regard to the use of large automatic passenger 
count data sets is related to the reporting of statistical inferences. As mentioned by 
Palmqvist (2019), researchers can study delays and delay causes with increasing 
levels of detail as a result of the growth of the volume of data that is being collected 
within the railway system. Automatic passenger count systems are an example of 
such improvements in data accessibility. Although having access to a large amount 
of data has several benefits, it is also possible to fall prey to the large sample size 
fallacy. In such cases, statistical significance is a result of having a large sample size 
but the findings have limited practical relevance (Lantz, 2013). This is where effect 
sizes come in. Effect sizes provide a measure of practical significance alongside the 
measure of statistical significance, and more importantly, effect sizes are not 
affected by large sample sizes (Lantz, 2013).  

The practical significance of findings is especially relevant for the studies conducted 
in the research presented here since there is a focus on the real-world impact of the 
findings. As the discussion on the findings from the studies will show, the large 
sample size fallacy would have been present in the work presented here as well if 
effect sizes were not calculated. It is in general recommended to report effect sizes 
as they provide additional information such as the magnitude of a difference or 
association (Brydges, 2019; Wilkinson & Task Force on Statistical Inference, 1999). 
Furthermore, knowledge about effect sizes is an important aspect when planning a 
study (Lakens, 2013). When reporting effect sizes this not only guards researchers 
against making claims that hold little to no practical relevance, it also provides 
important information for the relevant field of research. 
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Research question 4 
Which type of measures can be taken to improve dwell time punctuality for 
commuter trains?  
Paper I, II, III, IV, V 

 
The fourth research question aims to define different types of measures which can 
be taken to improve dwell time punctuality for commuter trains. Based on the 
literature and the studies conducted as part of this thesis three distinct avenues to 
improve dwell time punctuality have been identified. The first is a different 
approach to scheduling dwell times, where the current static approach to dwell time 
scheduling should be abandoned in favour of a more dynamic scheduling approach. 
The second avenue is to apply platform management measures to influence the 
behaviour of passengers in such a way that it has less of an impact on the duration 
and variability of dwell times. The third avenue that can be identified is that dwell 
time scheduling should take a more network-wide approach rather than treating 
stations as a single entity. 

A different approach to scheduling dwell times 
One way to improve dwell time punctuality according to Nash et al. (2006) is to 
conduct a complete and systematic revision of dwell times. A similar point can be 
made based on the findings presented in this thesis, where the current approach to 
dwell time scheduling has been found to lead to actual dwell times exceeding the 
scheduled times on a regular basis. Given the large amount of dwell time delays it 
is clear that the dwell times that are currently scheduled are too short. A 
straightforward approach to solve this issue is to schedule longer dwell times.  

Although this comes at the cost of longer travel times for passengers, past studies 
have indicated that punctuality has been found to be more important than total travel 
time (Parbo et al., 2016; Yabuki et al., 2017). Furthermore, it is worth pointing out 
that these changes to dwell times do not need to be large. The findings in both Paper 
II and Paper IV indicate that most dwell time delays are relatively small, often being 
less than 30 seconds, and small adjustments to the scheduled dwell time can thus go 
a long way towards reducing dwell time delays. 

This being said, extending dwell times is likely not the best way forward. Firstly, it 
can actually result in the dwelling process taking more time than what it does 
currently. This is due to a behavioural response to having additional time where 
more time is taken for a task if more time is given to said task (Carey, 1998). 
Furthermore, scheduling more dwell time could lead to unwanted behaviour such as 
an increase in door holding (Pritchard et al., 2021; Volovski et al., 2021). Extending 
dwell times can also lead to issues regarding the capacity of a railway system. 
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Longer dwell times reduce the available capacity since trains occupy stations longer 
and one should thus be thoughtful when scheduling longer dwell times. It is also 
worth pointing out that extending dwell times is likely not beneficial at all stations 
or across an entire day, leading to trains dwelling for an unnecessarily long time in 
some cases.  

A different, and arguably more fitting approach is, therefore, to adopt a dynamic 
approach towards scheduling dwell times. The results presented in Paper V, using a 
Rasch analysis, show that there is a case to be made that extending dwell times at 
all stations for all trains is indeed not necessary. Instead, specific problematic 
stations or services can be targeted when scheduling dwell times rather than the one-
size-fits-all approach currently used when scheduling dwell times. Doing so will 
extend dwell time there where it is needed, without increasing dwell times for cases 
where the current dwell time is actually sufficient. This approach does require 
continuous monitoring to follow up on changes made and see if they were effective 
or not. Whilst this increases the workload regarding the scheduling of dwell times, 
it will likely help to reduce dwell time delays in the long run. 

The case for platform management 
The findings presented in this thesis suggest that the dwelling process should not 
only be seen as an engineering problem but the behaviour of passengers should also 
be taken into account. On the one hand, this could be done by reducing the passenger 
volumes during peak hours, flattening the curve, to reduce the risk of a dwell time 
delay. However, the results from Paper IV suggest that this alone will not be 
sufficient. Based on the findings presented here, a strong case can be made in favour 
of platform management instead, actively changing the behaviour of passengers 
during the boarding and alighting process. As the logic behind the Swiss cheese 
model for passengers induced dwell time delays suggests, having passengers spread 
out evenly and queue next to the doors will likely reduce the risk of dwell time 
delays, even at higher passenger volumes. 

Platform management consists of measures taken on the platform to change the 
behaviour of passengers. Examples of this are measures to spread out boarding 
passengers more evenly, reducing the level of concentrated boarding and the impact 
of the critical door, as well as measures aimed at instructing passengers so that 
queues should not be formed in front of the doors of a train. These kinds of measures 
can be implemented in different ways, be it the use of markings, instructions by staff 
or physical measures such as the use of platform gates or markings.  
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Although platform management can have the potential to reduce dwell time delays, 
not every station will benefit from such kind of measures. One way to identify 
stations where platform management measures can be beneficial is by making use 
of the expected volume of passengers. As mentioned in the answer to research 
question 2, the volume of passengers acts as the accelerant for the negative impact 
of the spread of boarding passengers. Platform management measures should, 
therefore, be introduced at stations with a high expected number of passengers, as it 
is those stations where real benefits can be gained. 

A network-wide approach to dwell times 
Both of the previous approaches are aimed at solving the problem of dwell time 
delays within the context of a single station. Such an approach does, however, not 
account for interdependencies between different stations and between stations and 
services. As the findings from Paper I indicate, for example, there is an 
interdependency between stations which influences the spread of boarding 
passengers. When scheduling dwell times or introducing measures to reduce the 
impact of passengers on dwell times it is important to take these interdependencies 
into account. This is in line with statements made by Nash et al. (2006) who argue 
that it is important to coordinate the implementations of measures to reduce dwell 
time delays since uncoordinated measures will likely be less effective in the long 
term. 

In cases where a certain train service is often delayed at specific stations this can be 
a result of something occurring at a station upstream, and scheduling more dwell 
time at the problematic station might not address the actual cause for dwell time 
delays. Instead, it is important to understand the way stations are connected to 
uncover the underlying causes of dwell time delays. Making a change to the halting 
position at one station can, for example, help to reduce the chance of a dwell time 
delay at a downstream station.  
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10 Reflection on the data and 
 methods used 

10.1  The use of automatic passenger count data 
The thesis presented here relied heavily on the use of automatic passenger count 
data. The choice to make use of automatic passenger count data was guided by its 
availability, as well as by the features present in the data. First, in addition to 
information on the volume of passengers, the on-board systems used to collect the 
passenger count data provided the actual dwell time on a magnitude of seconds. As 
previously shown in Section 6.4.1 having data on a level of seconds rather than 
minutes is important when studying dwell times. In addition to this, the automatic 
passenger count data provides a large amount of data to work with. In the case of 
the data from Stockholm, there is information for an average of around 200,000 
station stops per year, and in the case of data from Skåne, this was an average of 
around 1.4 million station stops per year. The passenger count data used here also 
covers a rather large time span, this being six and four years in Stockholm and Skåne 
respectively, and a large geographical spread since the entire network is included in 
both datasets. Having access to such a large amount of data meant that different 
phenomena could be studied across a wide range of conditions. Some further 
reflections on the automatic passenger count data are presented below. 

10.1.1 Dwell times from the on-board systems 
Given that the focus in the work presented here is placed on the effect of passengers 
on dwell times it is important to reflect on what the measured dwell time does and 
does not include. In the case of the data from trains in Skåne, the dwell time is 
measured based on the time between the doors unlocking and locking. The dwell 
time provided by the on-board system thus reflects the boarding and alighting time. 
In contrast to this, the data collected on board trains in Stockholm is measured based 
on the wheel-stop and wheel-start time. In this case, the end of the dwell time is 
registered upon the departure of a train and thus includes both the boarding and 
alighting time as well as the dispatching time, measuring the total dwell time. 
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Since the data collected in Stockholm also contains the dispatching time, it is 
possible that the effect of passengers is somewhat overestimated in Paper II. This is 
because a dwell time delay can also be caused by a slow dispatch rather than by 
passengers in these cases. It was, however, not possible to examine the dispatching 
time, and this effect could thus not be corrected in the data. The dispatching time is 
not included in the data collected in Skåne since the end of the dwell time is 
registered when the doors lock, thus before the train departs. This makes the data 
originating from trains in Skåne more accurate in light of the studies conducted in 
this thesis. It is worth noting that a similar trend in terms of dwell time delay sizes 
was found between both datasets, suggesting that the inclusion of the dispatching 
time did not lead to any major problems. 

10.1.2 Passenger counts from the on-board systems 
Some reflections can be made regarding the passenger count part of the data. The 
first is how accurately the systems count passengers. With regards to the data 
collected on board trains in Skåne, a detection accuracy of 98% is indicated by the 
provider of the automatic passenger count data. The exact accuracy of the system 
used in Stockholm was not disclosed, but the provider of the data mentioned that 
the counts from the on-board system are corrected based on historical passenger 
counts when necessary. Using this historical data ensures the accuracy of the data 
according to the provider of the automatic passenger count data. In order to exclude 
situations where an unrealistically large number of passengers was counted, an 
upper limit for the volume of both boarding and alighting passengers was used 
during the data handling procedures. The upper limit was based on suggestions from 
the data providers.  

The next aspect worth reflecting on is data aggregation. The system used in 
Stockholm provides data on a carriage level, whereas the data collected in Skåne 
provides passenger counts on a door-by-door level. Where the former meant that it 
was only possible to study the effect of passenger volumes on dwell time, the door 
level data also allowed for studies into the spread of boarding passengers and to 
identify a critical door. As a result of this difference, no comparison was made 
between Stockholm and Skåne since the findings presented here suggest that 
information on the spread of passengers is required when studying dwell times, and 
only comparing the effect of the volume of passengers between both regions was 
deemed to be less valuable. 

It is also worth reflecting on the number of carriages equipped with an automatic 
passenger count system, as this has an influence on what is measured in terms of the 
sample space. All carriages used in Skåne are equipped with an automatic passenger 
count system, providing data on the entire population. This is not the case in 
Stockholm, where every seventh carriage is equipped with an automatic passenger 
count system and the system thus provides a sample of the population.  
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The limited number of carriages equipped with a passenger count system also causes 
a challenge in terms of interpreting the data. Trains in Stockholm can be composed 
of multiple carriages and the number of carriages equipped with an automatic 
passenger count system can thus vary per train. In practice, this means that a single 
train can provide either none, one, or multiple passenger counts depending on its 
composition. When taking the sum of passengers this can lead to situations where 
some stops involve an extreme volume of passengers compared to other stops, due 
to there being multiple carriages present that are equipped with an automatic 
passenger count system. To avoid such errors, the average of the volume of 
passengers was used instead. This does come with a risk of effectively excluding 
stops with a high volume of passengers. If a train consists of two carriages, one with 
50 and one with 100 passengers, the new total would be 75 passengers rather than 
150 passengers. At the same time, this approach does still take the dwell time 
associated with this observation into account thus associating it with a lower 
passenger volume. This being said, the trend described in Paper II is still valid, and 
would likely be even more prominent if the sum of passengers was used instead. 

10.1.3 Counts are not observations 
Whilst the automatic passenger count data is a rich source of data, it only provides 
passenger counts and does not provide observations on the boarding and alighting 
process itself. This means that the inferences that can be made are based on 
passenger counts and not observations, and effects such as passenger characteristics 
and late arriving passengers have not been identified in, or excluded from, the data. 
Although having such information is valuable, a trade-off was made between having 
a large data set on many services and stations as is the case with passenger count 
data, and having in-depth information on the dwelling process at a limited number 
of stations as would have been the case when making use of observations. The 
choice was made in favour of the former, partly due to the availability of the data 
and partly since observational studies have been conducted in the past and were 
limited in their sample sizes. The work presented here, on the other hand, provides 
insights into the dwelling process over a long period of time for a large number of 
stations and services. This meant that it was possible to study the effect of previously 
highlighted phenomena, such as the impact of concentrated boarding on dwell times, 
across a wider range of conditions than what was previously done. This would have 
not been feasible when making use of observational data. 
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10.2  The choice for robust analyses 
The various analyses performed as part of the thesis make use of so-called robust 
statistics, a choice that was primarily guided by the dwell time data not having a 
normal distribution. Most common parametric tests, such as a student’s t-test for 
example, rely on a normal distribution of the data, and test for statistically 
significant differences between the mean of two groups. However, as stated by 
Rousseeuw (1991), very few distributions that occur in practice have a perfectly 
Gaussian distribution and real-world data thus frequently departs from the 
assumptions. The same is true for the data on passenger volumes and dwell times 
used here. 

To illustrate why it was important to make use of robust statistical approaches, it is 
possible to take a look at the use of the median in favour of the mean. A common 
measure of central tendency is that of the mean, or average, value (Khorana et al., 
2022), although easy to interpret the mean can lead to misinterpretations when 
outliers are present in the data. Inspired by an example provided by Rousseeuw 
(1991), the problem can be explained as follows.  

Take the examples below with five trains dwelling at two stations with the following 
volume of boarding passengers: 

 

 

 
 

The first four values are the same in both examples, with only the fifth value being 
changed. In the first case, the mean number of boarding passengers is 41, which is 
substantially higher than most observations made. In the second case, the mean 
volume of boarding passengers is 26. The median volume of boarding passengers, 
on the other hand, is 31 and 30 in the first and second cases respectively and much 
closer to the actual volume of passengers that is observed.  

Furthermore, even though the only difference between both stations presented here 
is the fifth value, the mean volume of boarding passengers shifts from 41 to 26, a 
difference of 15 passengers. The median value, on the other hand, is much more 
stable, although it is still affected by the extreme fifth value, the change between 
both examples is only 1 passenger.  

  

30 – 35 – 28 – 31 – 80 

30 – 35 – 28 – 31 – 5 
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The impact of these kinds of extreme values and the presence of skewness in the 
data can pose problems when performing statistical analyses. Acknowledging the 
potential issues regarding the non-normality of the data, the quantitative analyses 
made use of non-parametric tests. Another name for such tests is distribution-free 
statistical procedures, indicating that there are no assumptions made about the 
distribution of the data (Scheff, 2016). Non-parametric tests are less powerful 
compared to their parametric counterparts when the assumptions for the latter are 
met and require larger sample sizes to achieve statistical significance (King & 
Eckersley, 2019; Ostertagová et al., 2014). However, when these assumptions are 
not met, as is the case with the data used here, non-parametric tests should be used 
(Ostertagová et al., 2014) especially since the use of parametric tests could cause 
misleading results (King & Eckersley, 2019). 

10.3  The effect sizes used 
When using large sample sizes, one can fall prey to the large sample size fallacy. In 
such cases, statistically significant findings are a result of having a large sample size 
but those findings have limited practical relevance (Lantz, 2013). An important 
decision when making use of effect sizes is specifying what small, medium, and 
large effects. The studies presented in this thesis make use of the suggestions 
provided by Cohen (1988) for the labels of the effect sizes. Using these suggested 
effect sizes is not the best approach, however, since these are guidelines that should 
only be used when domain-specific effect sizes are not available (Brydges, 2019; 
Cohen, 1988; Correll et al., 2020). As argued by Correll et al. (2020) the definitions 
of small, medium, and large effect sizes provided by Cohen are arbitrary and 
inconsistent and these definitions were proposed so that a researcher could make an 
informed judgment in the absence of other data.  

Ideally, the effect sizes used would thus have been based on previously reported 
effect sizes within the domain of railways or dwell times. However, effect sizes are 
often not reported within the domain of dwell time research. This means that it was 
necessary to make use of the suggestions made by Cohen (1988), as these were 
considered to be the best option given the lack of alternative ways to construct effect 
sizes. In practice, this means that what is considered to be a small effect might 
actually be large or vice versa. 
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11  Contributions of the thesis 

11.1  Contributions to research 
The contributions to research from this thesis are related to how dwell time delays 
can be studied using large automatic passenger count data sets. The key takeaways 
are the identification of the need for robust statistical approaches, the need to report 
effect sizes, and the need to describe dwell time delays in terms of frequencies rather 
than a measure of central tendency. Although the datasets used in this thesis are 
somewhat unique in both their size and level of detail, similar large datasets 
regarding passenger volumes and operational aspects might become more 
commonplace within the domain of railway research. When this is the case, it is 
important to understand the limitations of the data and potential pitfalls that arise as 
a result of the volume of data. Non-parametric testing might become the norm as 
real-world data tends to take on a non-normal distribution, for example. 
Furthermore, statistical significance becomes more likely when sample sizes 
increase, and only reporting the result of statistical tests can lead to an 
overestimation or misrepresentation of the importance and practical relevance of 
findings. It is, therefore, important to report effect sizes along with the results of 
statistical tests. In fact, this notion can be extended beyond just dwell time research 
into the field of railway research and transportation research in general. 

In addition to this, the work presented here shows the value of having data on more 
than just the volume of passengers when studying dwell times. The volume of 
passengers was found to not be the main cause for dwell time delays but act as an 
accelerator. When studying dwell times it is thus not sufficient to just focus on the 
volumes of passengers, but it is important to also include other aspects such as the 
spread of boarding passengers, and the ratio between boarding and alighting 
passengers when possible. When such data is not available, this limitation should be 
acknowledged during the analysis process. 

  



100 
 

11.2  Contributions to identifying dwell time delays 
As the Dutch saying goes “meten is weten” which translates into measuring is 
knowing, the same is true for dwell time delays. However, the current way to 
measure punctuality obscures the presence of dwell time delays. With dwell time 
delays not being accurately measured, the magnitude of the problem of dwell time 
delays is likely to be unknown. Three aspects are important to improve upon in order 
to better measure dwell time punctuality and with it identify where dwell time delays 
occur. These three aspects are the location, measurement scale, and the way in which 
the data is aggregated.   

The findings presented in this thesis point towards differences in terms of dwell time 
performance between different trains halting at the same station, and between the 
same trains halting at different stations. In order to better identify dwell time delays 
it is, therefore, important to measure dwell time punctuality at each station rather 
than just at a selection of stations or the final station. In addition to this, the dwell 
time performance should ideally be measured for each individual train service to 
better understand when dwell time delays occur.  

When measuring dwell times it is essential to use a sufficient level of detail in the 
measurement scale. Train movement data is often used to determine the punctuality 
of trains. This data is aggregated on a minute-by-minute level. Measuring 
punctuality on a scale of minutes means that a large portion of dwell time delays are 
actually not measured, as the overview in Table 6 (Section 6.4) shows. Having data 
on a level of seconds, on the other hand, allows for a more granular analysis and 
makes it possible to identify even small dwell time delays and with it measure dwell 
time punctuality more accurately. 

Accurately measuring dwell times is only half of the solution though, the next 
challenge is how to accurately reflect dwell time delays. To do so, it is important to 
have the right level of data aggregation. The current binary approach to punctuality 
will show whether a train is delayed or not, without providing insight into the size 
of the delay. Dwell time delays should ideally be represented in terms of their size 
and frequency instead. Doing so will not only show how large the dwell time delays 
are but also how often these delays occur. 

To summarize, in order to better identify dwell time delays there is a need to make 
use of data on a scale of seconds to allow for a sufficient level of detail in the 
observations. Dwell time delays should then be measured based on both their size 
and frequency. These measurements should ideally include all stations within a 
network as well as the different services that are operated in order to identify where 
dwell time delays pose a problematic situation. These analyses should ideally take 
place periodically and be formally incorporated into the process of timetabling. 
Doing so allows for a more case-specific approach to dwell time scheduling which 
will be beneficial to help reduce dwell time delays. 
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11.3 Policy implications 
Although there is no silver bullet for the question of how much dwell time should 
be scheduled, several points of attention can be raised to guide the process towards 
scheduling dwell times that are more aligned with the real-world situation. Working 
on these points can benefit the decision-making process for scheduling dwell times 
and will ultimately help improve dwell time punctuality for commuter trains. It is 
worth pointing out that even though the research presented in this thesis was 
conducted within a Swedish context, the points raised here can be applicable in other 
countries as well. 

11.3.1 A more dynamic approach to dwell time scheduling 
One aspect to include in the process of scheduling dwell times is to allow for a more 
dynamic approach. Currently, dwell times in Sweden are scheduled using a static 
approach where the same dwell time is applied to multiple stations and no difference 
is made between peak and off-peak hours. This approach assumes that the necessary 
dwell time is stable. The findings in this thesis suggest that this is likely not the case 
since there are differences in passenger flows between peak and off-peak hours as 
well as between stations. These differences are currently not captured. To better 
align the scheduled dwell time with the actual dwell time, a more dynamic approach 
is necessary where different dwell times are scheduled between peak and off-peak 
hours and more importantly between different stations and between different 
services halting at the same station. It should be acknowledged that this change 
increases the workload when designing a timetable, but it is likely to have large 
benefits in terms of the on-time performance of railways. 

An argument in favour of the current way of scheduling dwell times is that it allows 
for a cyclical timetable, something that is preferred as it makes the timetable easier 
to understand for passengers (Robenek et al., 2016). A more dynamic approach to 
dwell time scheduling would mean that it is not always possible to have a cyclical 
timetable. This should, however, not be as much of a problem in practice since a 
majority of dwell time delays are rather small, being thirty seconds or less. Such a 
small change can be included in the operational timetable without presenting this to 
passengers. The train scheduled to depart at 9:01 can still be shown to depart at 
09:01:00 but can be scheduled to actually depart at 09:01:15, for example. 
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11.3.2 Making use of the available data 
In order to implement a more dynamic approach to dwell time scheduling it is 
important to make use of the available data, such as the highly detailed passenger 
count data used throughout this thesis. Despite this data being available it is 
currently not sufficiently used, and dwell time delays can remain hidden in 
punctuality statistics. A rather straightforward solution for this is to actually 
measure dwell time punctuality, using the available data. As mentioned in the 
answer to Research question 3, this would ideally be done by making use of the 
frequency of different delay sizes rather than a single threshold as is the case for the 
punctuality statistics currently in use. Adopting this approach can be the first step 
towards reducing dwell time delays since the magnitude of the problem will become 
visible. 

11.3.3 Understanding and adapting (to) passenger behaviour 
The findings presented in this thesis point towards the importance of the behaviour 
of passengers for dwell times. This means that the dwelling process should not be 
viewed as a technical problem that can be fixed by timetable or rolling stock based 
interventions. Instead, the behaviour of passengers during the boarding and 
alighting process, such as the formation of queues, should also be taken into account 
when introducing measures to reduce dwell time delays.  

In addition to this, more effort should be placed on understanding how passengers 
move through a railway network, and what the implications for dwell times are of 
this behaviour. Having such an understanding will allow railway operators to adapt 
the behaviour of passengers to fit better with the system, or vice versa. A concrete 
example of this would be changes to the stopping position of trains in such a way 
that the doors close to the entrance are not always lined up with carriages that are 
already quite full given the boarding behaviour at previous stations. 

11.3.4 An ideal way to collect passenger flow data 
Although this thesis does not necessarily aim to show the ideal way in which 
passenger flow data should be collected it is still worth elaborating on this subject. 
The studies presented here relied heavily on the availability of automatic passenger 
count data. Based on this experience, it is fair to say that an automatic way to collect 
data is of great importance to ensure sufficiently large sample sizes to conduct in-
depth studies on dwell times in a real-world setting. Although the passenger count 
data used here has a high level of detail, improvements can be made.  
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In addition to the number of boarding and alighting passengers per door, automatic 
passenger count data should ideally also include timestamps on when these 
passengers board or alight the train. Having access to information on when 
passengers board makes it possible to identify the effect of late-arriving passengers 
on dwell times.  

Having information on the exact boarding and alighting times of passengers also 
makes it possible to study the concept of minimum dwell time and dwell time 
margins, as described in Section 1.3. It is currently necessary to make some 
concessions to measure minimum dwell times, such as only making use of delayed 
trains as done by Pedersen et al. (2018). This not only limits the available data, it 
also requires the train to depart as soon as the boarding is completed for this 
assumption to hold. Studying the minimum dwell time is relevant as it sheds light 
on dwell time margins and capacity assessments of networks, something which will 
become more important as networks become more heavily utilized.  

It is also worthwhile to collect detailed origin-destination data alongside passenger 
count data, as this would make it possible to study carriage choice in greater detail. 
Although some studies delved into this, see for example the work done by Fang et 
al. (2019) and Peftitsi et al. (2020), these studies were limited to using data 
aggregated on a carriage level. Given this limitation, these studies could not study 
the door choice. On the other hand, the study presented in Paper III had no access 
to detailed origin-destination data, meaning that it was not possible to study the 
spread of boarding passengers in relation to travel behaviour. Having access to both 
origin-destination data and door-by-door passenger count data would bring together 
two valuable data sources. 

To conclude, operators have the opportunity to collect an incredible amount of 
highly detailed data when the necessary systems are put in place. These systems 
should be considered when acquiring a new system or trainset. Retrofitting the 
necessary technology can become a rather costly exercise, whereas the costs are 
likely to be relatively low when part of a larger investment into new rolling stock. 
Data collection methods should, therefore, be taken into account in addition to other 
criteria when buying new, or updating existing, rolling stock. Having access to 
highly detailed information will allow for a more in-depth study of passenger flows 
within a railway network. This is not only relevant for dwell time research but can 
be beneficial for a wider area of transportation research as well, for both academia 
and practitioners. 
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12 Limitations 

As with many things in life, this thesis comes with some limitations. The main 
limitations are related to the data that was used and the data that was not available 
or collected during the completion of this thesis. The main limitation of the 
passenger count data, it being counts and not observations, has been shortly 
addressed in Section 10.1.3 but this deserves further elaboration. As mentioned 
before, the count data only provides the sum of passengers and does not provide 
information on when passengers board or alight. This can be problematic since late 
arriving passengers can have a noticeable effect on the length of dwell times. Take 
for example a situation where the scheduled dwell time is 60 but the actual dwell 
time is 75 seconds, and a total of 50 boarding passengers are registered. Two 
possible ways in which this number of passengers for this dwell time delay can be 
observed are shown in Figure 21. 

 

 
Figure 21: Examples of different ways in which passenger volumes can be collected. The 
dashed line shows the scheduled dwell time. 

Figure 21a shows a continuous flow of passengers that results in exceeding the 
scheduled dwell time. Here it is possible to state that the boarding process took too 
long and this caused a dwell time delay. Another possible situation is shown in 
Figure 21b where the initial cluster of boarding passengers is handled within the 
scheduled time, but a late arriving passenger causes a dwell time delay to happen. 
Both situations show up the same in the datasets used in this study, whilst the actual 
cause for the dwell time delay is not the same. This is a limitation which is a result 
of the system used by the operator of the trains to collect the data and could thus not 
be addressed within the scope of this thesis. 
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Another limitation concerning data access is the lack of data on dwell time margins. 
Planners can include margins in the scheduled dwell time, scheduling more time 
than needed to allow trains to make up time and reduce their delay. There is, 
however, no formal way to schedule such dwell time margins in Sweden and as a 
result of this the presence of these margins is somewhat hidden in the timetable. Not 
having information on the presence and size of dwell time margins can result in an 
underestimation of dwell time delays, where some of the effects found in the work 
presented here might be stronger than reported. 

There are also some limitations concerning the data that has not been included or 
collected. Although the layout of a station, both in terms of the platform and the 
station area was highlighted as being influential, such information was not collected 
during the work completed as part of this thesis. The absence of this information 
means that some assumptions had to be made regarding station-specific 
characteristics to capture this effect, which resulted in including the historical dwell 
time of stations in Paper V, for example. If information on the layout of platforms 
and information on the station area was present such assumptions would not have 
been necessary and the effect of station-specific characteristics could be studied 
with more detail. The absence of this information is the result of a prioritization of 
other avenues of research which result in the work presented in both Paper IV and 
Paper V. 

Along a similar line of thought, it is worth discussing the absence of qualitative data 
such as questionnaires or interviews in the studies presented in this thesis. It was 
deemed to be unnecessary to perform an interview study into planning principles 
given the work presented in Palmqvist et al. (2017) in which comments regarding 
dwell time scheduling were made. These scheduling principles have likely not 
undergone drastic changes between the writing of this thesis and the publication of 
the paper by Palmqvist et al. (2017). Evidence of this is the rather stagnant scheduled 
dwell time where dwell times are similar over a period between 2012 and 2020.  

Although questionnaire studies and observational studies on the behaviour of 
passengers on the platform were planned early on in this PhD journey and could 
have provided valuable additional information, such studies were not conducted in 
the end. The main reason for this was the COVID-19 pandemic, which not only 
meant that a significant portion of the time spent completing this PhD was spent 
working from home, but it also meant that the way in which passengers behave on 
platforms was likely to be different from what is considered to be the normal 
situation. Collecting qualitative data during this period would have been of interest 
within the context of COVID-19, but not necessarily reflect normal conditions. 
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13 Future research 

Given the limitations previously described, there is naturally also room for future 
research and improvements. Three main themes can be identified within which 
future research could take place, these being a network and planning theme, a 
behavioural theme, and an unplanned event theme.  

Regarding the first, the network and planning theme, two concrete ideas can be 
formulated. The first proposal falls under the planning side, where the proposed 
dynamic scheduling of dwell times can be studied. This can be done either within a 
simulated environment, be it a micro/macro simulation or mathematical simulation 
model, or in a real-world scenario. The second line of research is related to 
understanding the interdependencies of stations in relation to the critical door of a 
train. This line of work is inspired by the work presented in Fiebag (2019) where 
hotspots of boarding and alighting passengers were identified within a subway 
network in Germany. Such a line of research should include the effect of the area in 
which a station is located, such as the direction to a city centre or connecting 
transport modes. Knowing where hotspots of boarding and alighting passengers 
overlap can guide interventions such as changes to the halting position of a train. 

As mentioned in the limitations, the studies presented in this thesis did not make use 
of qualitative data such as observations of passenger behaviour. This leaves room 
for future studies, such as studies into the behaviour of passengers during the 
boarding and alighting process. Furthermore, it is of interest to study the effect of 
the proposed platform management measures. This behavioural theme can also 
include the behaviour of train staff, both drivers and train attendants and their role 
in dwell time delays. A potential avenue here is to study the driving behaviour of 
train drivers to understand the impact of the train slowing down and speeding up 
again on dwell times.  
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The third theme of possible future research is that of studying unplanned events such 
as door failures and platform changes. These unplanned events can have potentially 
large effects on dwell times. For example, a broken door means that the boarding 
passengers are spread between fewer doors and can cause the boarding and alighting 
process to take much longer at the doors nearest to the one that is broken. 
Furthermore, passengers potentially require additional time between realizing a 
door is broken and choosing a new door to board through. The impact of this on 
dwell time is, however, not well studied. Knowing the impact of broken doors on 
dwell times can help to inform rolling stock maintenance schedules, for example, 
by identifying the importance of making sure that all the doors of a train operate as 
intended. Another unplanned event is that of a last-minute platform change. This 
requires passengers to move to a different platform and can result in passengers 
making use of the doors closest to the platform entrance to board the train as a result 
of stress due to the fear of missing the train, a phenomenon which has been 
previously identified. In such a case the platform change induces a degree of 
concentrated boarding, which will likely extend dwell times. No research on this 
phenomenon has been identified during the work done in this thesis, however. This 
whilst understanding the impact of track changes on dwell times can help inform 
dispatchers during real-time rescheduling tasks by raising awareness of what an 
unplanned platform change does to the dwell time. 
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14 Conclusion 

The overarching aim of the thesis presented here is to develop knowledge of how 
dwell time delays arise in order to identify and describe potential ways in which 
dwell time delays can be reduced. In addition to this, a secondary aim is to identify 
how dwell times can be studied on a network-wide level. The following research 
questions have been answered to achieve these goals: 1) What are the causes of 
dwell time delays for commuter trains? 2) How do boarding and alighting 
passengers influence the duration of dwell times for commuter trains? 3) How can 
dwell time delays be studied in a network with automatic passenger count data? 4) 
Which type of measures can be taken to reduce dwell time delays for commuter 
trains? 

The main findings are as follows. The dwell time process is complex and different 
causes for dwell time delays were identified. A consensus can be found in the 
literature that the presence of passengers is one of the major causes of dwell time 
delays. Although the volume of passengers is often regarded as the main way in 
which passengers have an effect on dwell times, the findings presented in this thesis 
indicate that the volume of passengers instead acts as an accelerator for the negative 
impact of other aspects, such as the behaviour of passengers. The risk of dwell time 
delays is thus not driven by the volume of passengers alone but by a combination of 
unfavourable factors such as a high volume of passengers in combination with an 
uneven spread of boarding passengers. 

Different ways in which dwell time delays can be studied in a network with 
automatic passenger count data have been presented. In order to better highlight the 
problem of dwell time delays it is important to measure the actual dwell times across 
all stations and services. Dwell time delays should be represented in terms of their 
size and frequency to gain a better understanding of the magnitude of the problem, 
not only revealing how large delays are but also how often they occur. Furthermore, 
methods such as a Rasch analysis can be introduced to study dwell time performance 
for stations and services in a single dimension. Having such insights can help 
identify when and where dwell time delays arise, allowing for better informed 
measures to be taken to reduce dwell time delays. 

 
 

 



109 
 

In general, it can be stated that there is no silver bullet to avoid dwell time delays, 
and it is important to better understand the nature of dwell times and dwell time 
delays. This can be achieved by gaining a systematic understanding of the dwelling 
process. One aspect of this is the need for better delay indexes for dwell times and 
a systematic and formal monitoring of dwell time performances across stations and 
services. Doing so can help to point towards hot spots where delays are more likely 
to happen and efforts to reduce dwell time delays can make a real impact. This 
should ideally lead to a more dynamic approach to dwell time scheduling where 
dwell times are tailored to specific stations and specific services. Although in some 
cases this means that dwell times need to be extended, and thus extend travel times, 
the findings in this thesis suggest that small changes in the dwell time can go a long 
way so the actual impact will be limited.  

The solutions towards reducing dwell time delays should, however, not be limited 
to a timetable or engineering scope. Adding more dwell time will likely not be the 
answer to solving dwell time delays. Furthermore, engineering solutions such as 
widening doors will only be beneficial when passengers queue next to these doors. 
Instead, the behaviour of passengers both on the platform and the way they travel 
through the network should be considered and studied as well. Having a better 
understanding of how often and where dwell time delays occur and the behaviour 
of passengers can help make informed decisions that have the potential to make a 
real difference and result in fewer dwell time delays. It is this combination of 
scheduling dwell times more dynamically and accounting for the users in the system 
that will have the biggest potential to make a real difference in terms of dwell time 
punctuality.  
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